Open Access
2012 On the Bogolyubov–Ruzsa lemma
Tom Sanders
Anal. PDE 5(3): 627-655 (2012). DOI: 10.2140/apde.2012.5.627

Abstract

Our main result is that if A is a finite subset of an abelian group with |A+A|K|A|, then 2A2A contains an O(logO(1)2K)-dimensional coset progression M of size at least exp(O(logO(1)2K))|A|.

Citation

Download Citation

Tom Sanders. "On the Bogolyubov–Ruzsa lemma." Anal. PDE 5 (3) 627 - 655, 2012. https://doi.org/10.2140/apde.2012.5.627

Information

Received: 4 November 2010; Revised: 12 September 2011; Accepted: 9 October 2011; Published: 2012
First available in Project Euclid: 20 December 2017

zbMATH: 1320.11009
MathSciNet: MR2994508
Digital Object Identifier: 10.2140/apde.2012.5.627

Subjects:
Primary: 11L07

Keywords: coset progressions , Fourier analysis , Freiman , generalised arithmetic progressions , small doubling , sumsets

Rights: Copyright © 2012 Mathematical Sciences Publishers

Vol.5 • No. 3 • 2012
MSP
Back to Top