Open Access
2019 Alexandrov's theorem revisited
Matias Gonzalo Delgadino, Francesco Maggi
Anal. PDE 12(6): 1613-1642 (2019). DOI: 10.2140/apde.2019.12.1613

Abstract

We show that among sets of finite perimeter balls are the only volume-constrained critical points of the perimeter functional.

Citation

Download Citation

Matias Gonzalo Delgadino. Francesco Maggi. "Alexandrov's theorem revisited." Anal. PDE 12 (6) 1613 - 1642, 2019. https://doi.org/10.2140/apde.2019.12.1613

Information

Received: 29 May 2018; Revised: 1 October 2018; Accepted: 20 November 2018; Published: 2019
First available in Project Euclid: 12 March 2019

zbMATH: 07061135
MathSciNet: MR3921314
Digital Object Identifier: 10.2140/apde.2019.12.1613

Subjects:
Primary: 35J93 , 49Q15 , 49Q20 , 53C21 , 53C45

Keywords: constant mean curvature , geometric measure theory , isoperimetric problem , Mean curvature flow , sets of finite perimeter , varifolds

Rights: Copyright © 2019 Mathematical Sciences Publishers

Vol.12 • No. 6 • 2019
MSP
Back to Top