Open Access
2009 Cellular approximations and the Eilenberg–Moore spectral sequence
Shoham Shamir
Algebr. Geom. Topol. 9(3): 1309-1340 (2009). DOI: 10.2140/agt.2009.9.1309

Abstract

We set up machinery for recognizing k–cellular modules and k–cellular approximations, where k is an R–module and R is either a ring or a ring-spectrum. Using this machinery we can identify the target of the Eilenberg–Moore cohomology spectral sequence for a fibration in various cases. In this manner we get new proofs for known results concerning the Eilenberg–Moore spectral sequence and generalize another result.

Citation

Download Citation

Shoham Shamir. "Cellular approximations and the Eilenberg–Moore spectral sequence." Algebr. Geom. Topol. 9 (3) 1309 - 1340, 2009. https://doi.org/10.2140/agt.2009.9.1309

Information

Received: 13 December 2007; Revised: 17 April 2009; Accepted: 19 April 2009; Published: 2009
First available in Project Euclid: 20 December 2017

zbMATH: 1225.55004
MathSciNet: MR2520402
Digital Object Identifier: 10.2140/agt.2009.9.1309

Subjects:
Primary: 55P43 , 55T20

Keywords: Eilenberg–Moore spectral sequence

Rights: Copyright © 2009 Mathematical Sciences Publishers

Vol.9 • No. 3 • 2009
MSP
Back to Top