Open Access
2014 Twisted equivariant $K$–theory and $K$–homology of $\mathrm{Sl}_3{\mathbb{Z}}$
Noé Bárcenas, Mario Velásquez
Algebr. Geom. Topol. 14(2): 823-852 (2014). DOI: 10.2140/agt.2014.14.823

Abstract

We use a spectral sequence to compute twisted equivariant K–theory groups for the classifying space of proper actions of discrete groups. We study a form of Poincaré duality for twisted equivariant K–theory studied by Echterhoff, Emerson and Kim in the context of the Baum–Connes conjecture with coefficients and verify it for the group Sl3().

Citation

Download Citation

Noé Bárcenas. Mario Velásquez. "Twisted equivariant $K$–theory and $K$–homology of $\mathrm{Sl}_3{\mathbb{Z}}$." Algebr. Geom. Topol. 14 (2) 823 - 852, 2014. https://doi.org/10.2140/agt.2014.14.823

Information

Received: 3 April 2013; Revised: 19 August 2013; Accepted: 10 September 2013; Published: 2014
First available in Project Euclid: 19 December 2017

zbMATH: 1290.19002
MathSciNet: MR3160604
Digital Object Identifier: 10.2140/agt.2014.14.823

Subjects:
Primary: 19L47
Secondary: 46L80 , 55N91

Keywords: $\mathit{KK}$–theoretic duality , Baum–Connes conjecture with coefficients , Bredon cohomology , twisted $K$–theory , twisted equivariant $k$–theory , twisted group $C^*$–algebras , universal coefficient theorem

Rights: Copyright © 2014 Mathematical Sciences Publishers

Vol.14 • No. 2 • 2014
MSP
Back to Top