Open Access
2014 Aspherical manifolds that cannot be triangulated
Michael W Davis, Jim Fowler, Jean-François Lafont
Algebr. Geom. Topol. 14(2): 795-803 (2014). DOI: 10.2140/agt.2014.14.795

Abstract

By a result of Manolescu [arXiv:1303.2354v2] there are topological closed n–manifolds that cannot be triangulated for each n5. We show here that for n6 we can choose such manifolds to be aspherical.

Citation

Download Citation

Michael W Davis. Jim Fowler. Jean-François Lafont. "Aspherical manifolds that cannot be triangulated." Algebr. Geom. Topol. 14 (2) 795 - 803, 2014. https://doi.org/10.2140/agt.2014.14.795

Information

Received: 12 May 2013; Revised: 25 August 2013; Accepted: 6 September 2013; Published: 2014
First available in Project Euclid: 19 December 2017

zbMATH: 1288.57023
MathSciNet: MR3159970
Digital Object Identifier: 10.2140/agt.2014.14.795

Subjects:
Primary: 57Q15
Secondary: 20F65 , 57Q25 , 57R58

Keywords: aspherical manifold , homology manifold , homology sphere , hyperbolization , PL manifold , Rokhlin invariant , Triangulation

Rights: Copyright © 2014 Mathematical Sciences Publishers

Vol.14 • No. 2 • 2014
MSP
Back to Top