Translator Disclaimer
2014 Averages of the number of points on elliptic curves
Greg Martin, Paul Pollack, Ethan Smith
Algebra Number Theory 8(4): 813-836 (2014). DOI: 10.2140/ant.2014.8.813

Abstract

If E is an elliptic curve defined over and p is a prime of good reduction for E, let E(Fp) denote the set of points on the reduced curve modulo p. Define an arithmetic function ME(N) by setting ME(N):=#{p:#E(Fp)=N}. Recently, David and the third author studied the average of ME(N) over certain “boxes” of elliptic curves E. Assuming a plausible conjecture about primes in short intervals, they showed the following: for each N, the average of ME(N) over a box with sufficiently large sides is K(N)logN for an explicitly given function K(N).

The function K(N) is somewhat peculiar: defined as a product over the primes dividing N, it resembles a multiplicative function at first glance. But further inspection reveals that it is not, and so one cannot directly investigate its properties by the usual tools of multiplicative number theory. In this paper, we overcome these difficulties and prove a number of statistical results about K(N). For example, we determine the mean value of K(N) over all N, odd N and prime N, and we show that K(N) has a distribution function. We also explain how our results relate to existing theorems and conjectures on the multiplicative properties of #E(Fp), such as Koblitz’s conjecture.

Citation

Download Citation

Greg Martin. Paul Pollack. Ethan Smith. "Averages of the number of points on elliptic curves." Algebra Number Theory 8 (4) 813 - 836, 2014. https://doi.org/10.2140/ant.2014.8.813

Information

Received: 26 August 2012; Revised: 14 December 2013; Accepted: 15 February 2014; Published: 2014
First available in Project Euclid: 20 December 2017

zbMATH: 1316.11046
MathSciNet: MR3248986
Digital Object Identifier: 10.2140/ant.2014.8.813

Subjects:
Primary: 11G05
Secondary: 11N37, 11N60

Rights: Copyright © 2014 Mathematical Sciences Publishers

JOURNAL ARTICLE
24 PAGES


SHARE
Vol.8 • No. 4 • 2014
MSP
Back to Top