Open Access
2013 Analytic families of finite-slope Selmer groups
Jonathan Pottharst
Algebra Number Theory 7(7): 1571-1612 (2013). DOI: 10.2140/ant.2013.7.1571

Abstract

We develop a theory of Selmer groups for analytic families of Galois representations, which are only assumed “ordinary” on the level of their underlying (φ,Γ)-modules. Our approach brings the finite-slope nonordinary case of Iwasawa theory onto an equal footing with ordinary cases in which p is inverted.

Citation

Download Citation

Jonathan Pottharst. "Analytic families of finite-slope Selmer groups." Algebra Number Theory 7 (7) 1571 - 1612, 2013. https://doi.org/10.2140/ant.2013.7.1571

Information

Received: 17 August 2011; Revised: 28 July 2012; Accepted: 17 December 2012; Published: 2013
First available in Project Euclid: 20 December 2017

zbMATH: 1370.11123
MathSciNet: MR3117501
Digital Object Identifier: 10.2140/ant.2013.7.1571

Subjects:
Primary: 11R23
Secondary: 11R34 , 12G05

Keywords: $(\varphi, \Gamma)$-modules , families of Galois representations , Iwasawa theory , Selmer group

Rights: Copyright © 2013 Mathematical Sciences Publishers

Vol.7 • No. 7 • 2013
MSP
Back to Top