2020 Nonvanishing of hyperelliptic zeta functions over finite fields
Jordan S. Ellenberg, Wanlin Li, Mark Shusterman
Algebra Number Theory 14(7): 1895-1909 (2020). DOI: 10.2140/ant.2020.14.1895

Abstract

Fixing t and a finite field 𝔽q of odd characteristic, we give an explicit upper bound on the proportion of genus g hyperelliptic curves over 𝔽q whose zeta function vanishes at 12+it. Our upper bound is independent of g and tends to 0 as q grows.

Citation

Download Citation

Jordan S. Ellenberg. Wanlin Li. Mark Shusterman. "Nonvanishing of hyperelliptic zeta functions over finite fields." Algebra Number Theory 14 (7) 1895 - 1909, 2020. https://doi.org/10.2140/ant.2020.14.1895

Information

Received: 22 February 2019; Revised: 18 December 2019; Accepted: 6 February 2020; Published: 2020
First available in Project Euclid: 17 September 2020

zbMATH: 07248675
MathSciNet: MR4150253
Digital Object Identifier: 10.2140/ant.2020.14.1895

Subjects:
Primary: 11M38

Keywords: Dirichlet characters , function fields , L-functions , nonvanishing

Rights: Copyright © 2020 Mathematical Sciences Publishers

JOURNAL ARTICLE
15 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.14 • No. 7 • 2020
MSP
Back to Top