Open Access
2009 AUTOMORPHISMS AND DERIVATIONS ON THE CENTER OF A RING
V.K. Bhat
Author Affiliations +
Albanian J. Math. 3(2): 57-61 (2009). DOI: 10.51286/albjm/1237360644

Abstract

Let R be a ring, σ1 an automorphism of R and δ1 a σ1-derivation of R. Let σ2 be an automorphism of O1(R)=R[x;σ1,δ1], and δ2 be a σ2-derivation of O1(R). Let SZ(O1(R)), the center of O1(R). Then it is proved that σi is identity when restricted to S, and δi is zero when restricted to S; i=1,2. The result is proved for iterated extensions also.

Citation

Download Citation

V.K. Bhat. "AUTOMORPHISMS AND DERIVATIONS ON THE CENTER OF A RING." Albanian J. Math. 3 (2) 57 - 61, 2009. https://doi.org/10.51286/albjm/1237360644

Information

Published: 2009
First available in Project Euclid: 14 July 2023

Digital Object Identifier: 10.51286/albjm/1237360644

Subjects:
Primary: 16-XX
Secondary: 16P40 , 16P50 , 16S36 , 16U20

Keywords: automorphism , center , Ore extension , σ-derivation

Rights: Copyright © 2009 Research Institute of Science and Technology (RISAT)

Vol.3 • No. 2 • 2009
Back to Top