Open Access
2016 Rational Pairing Rank of a Map
Toshihiro Yamaguchi
Afr. Diaspora J. Math. (N.S.) 19(1): 1-11 (2016).

Abstract

We define a rational homotopy invariant, the rational pairing rank $v_0(f)$ of a map $f:X\to Y$, which is a natural generalization of the rational pairing rank $v_0(X)$ of a space $X$ [16]. It is upper-bounded by the rational LS-category $cat_0(f)$ and lower-bounded by an invariant $g_0(f)$ related to the rank of Gottlieb group. Also it has a good estimate for a fibration $X\overset{j}{\to} E\overset{p}{\to} Y$ such as $v_0(E)\leq v_0(j) +v_0(p)\leq v_0(X) +v_0(Y)$.

Citation

Download Citation

Toshihiro Yamaguchi. "Rational Pairing Rank of a Map." Afr. Diaspora J. Math. (N.S.) 19 (1) 1 - 11, 2016.

Information

Published: 2016
First available in Project Euclid: 9 June 2016

zbMATH: 1359.55009
MathSciNet: MR3499093

Subjects:
Primary: 55M30 , 55P62 , 55Q70 , 55R05

Keywords: Gottlieb group , Gottlieb rank of a map , Halperin conjecture , LS-category of a map , pairing rank of a map , rational homotopy , Sullivan model

Rights: Copyright © 2016 Mathematical Research Publishers

Vol.19 • No. 1 • 2016
Back to Top