Open Access
2012 An Elementary Symmetry-Based Derivation of the Heat Kernel on Heisenberg Group
B. Diatta, J. C. Ndogmo, C. Wafo Soh
Afr. Diaspora J. Math. (N.S.) 14(2): 82-89 (2012).

Abstract

Using symmetry arguments, we propose a simple derivation of a fundamental solution of the operator $\partial_t \Delta_H$ in which $\Delta_H$ is Kohn-Laplace operator on the Heisenberg group $H^{2n+1}$. Our derivation extends that of Craddock and Lennox [J. Differential Equations 232(2007), 652-674]. Indeed, these authors solved the same problem by employing a symmetry approach in the case $n=1$ . We demonstrate that the case $n=1$ is quite peculiar from a symmetry standpoint and the extension of symmetry arguments to the case $n>1$ requires some intermediate results.

Citation

Download Citation

B. Diatta. J. C. Ndogmo. C. Wafo Soh. "An Elementary Symmetry-Based Derivation of the Heat Kernel on Heisenberg Group." Afr. Diaspora J. Math. (N.S.) 14 (2) 82 - 89, 2012.

Information

Published: 2012
First available in Project Euclid: 31 July 2013

zbMATH: 1337.35162
MathSciNet: MR3093236

Subjects:
Primary: 17B66; 34A26; 35R06; 35C05; 35K15; 60H99; 60G99

Keywords: fundamental solution , heat kernel , Heisenberg group , Lie symmetry , separation of variables

Rights: Copyright © 2012 Mathematical Research Publishers

Vol.14 • No. 2 • 2012
Back to Top