Abstract
We introduce a variable exponent version of the Hardy space of analytic functions on the unit disk. We then show some properties of the space and give an example of a variable exponent $p(\cdot)$ that satisfies the $\log$-Hölder condition and $H^{p(\cdot)}\neq H^q$ for every constant exponent $q \in (1, \infty)$. We also consider a variable exponent version of the Hardy space on the upper-half plane.
Citation
G. A. Chacón. G. R. Chacón. "Analytic variable exponent Hardy spaces." Adv. Oper. Theory 4 (4) 738 - 749, Autumn 2019. https://doi.org/10.15352/aot.1901-1459
Information