Autumn 2019 Analytic variable exponent Hardy spaces
G‎. ‎A‎. Chacón, G. R. Chacón
Adv. Oper. Theory 4(4): 738-749 (Autumn 2019). DOI: 10.15352/aot.1901-1459

Abstract

‎We introduce a variable exponent version of the Hardy space of analytic functions on the unit disk‎. ‎We then show some properties of the space and give an example of a variable exponent $p(\cdot)$ that satisfies the $\log$-Hölder condition and $H^{p(\cdot)}\neq H^q$ for every constant exponent $q \in (1, \infty)$‎. ‎We also consider a variable exponent version of the Hardy space on the upper-half plane.‎

Citation

Download Citation

G‎. ‎A‎. Chacón. G. R. Chacón. "Analytic variable exponent Hardy spaces." Adv. Oper. Theory 4 (4) 738 - 749, Autumn 2019. https://doi.org/10.15352/aot.1901-1459

Information

Received: 11 January 2019; Accepted: 27 February 2019; Published: Autumn 2019
First available in Project Euclid: 15 May 2019

zbMATH: 07064102
MathSciNet: MR3949972
Digital Object Identifier: 10.15352/aot.1901-1459

Subjects:
Primary: 30H10
Secondary: 42B30

Keywords: Hardy space , harmonic Hardy space , variable exponent space‎‎

Rights: Copyright © 2019 Tusi Mathematical Research Group

JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.4 • No. 4 • Autumn 2019
Back to Top