Abstract
We investigate qualitative properties of solutions to the Cauchy problem for the equation $\rho(x)u_t=(u^m)_{xx}-c_0 u^p$, where $m>1$ and $c_0, p >0$; the initial data are nonnegative with compact support and the density $\rho(x)>0$ satisfies suitable decay conditions as $|x|\to\infty$. If $p \ge m$ and $\rho(x)$ decays not faster than $|x|^{-k}$, where $0 <k \le k^*:=2(p-1)/(p-m)$, the interfaces exist globally in time. On the contrary, if $\rho(x)$ decays faster than $|x|^{-k}$ with $k>k^*$, the interfaces can disappear in finite time. It is also proved that solutions go to zero uniformly as $t \to\infty $, at variance from the case $c_0=0$.
Citation
Robert Kersner. Guillermo Reyes. Alberto Tesei. "On a class of parabolic equations with variable density and absorption." Adv. Differential Equations 7 (2) 155 - 176, 2002. https://doi.org/10.57262/ade/1356651849
Information