2000 A variational problem for manifold valued functions
Vieri Benci, Fabio Giannoni, Paolo Piccione
Adv. Differential Equations 5(1-3): 369-400 (2000). DOI: 10.57262/ade/1356651389

Abstract

We prove a result of existence and multiplicity for local minima of a functional defined on maps from $\mathbb R^3$ to a compact Riemannian manifold $\mathcal M$. The interest in such a minimization problem lies in possible applications to field theory. Namely, the solutions to our variational problem are related to the existence of topological solitons.

Citation

Download Citation

Vieri Benci. Fabio Giannoni. Paolo Piccione. "A variational problem for manifold valued functions." Adv. Differential Equations 5 (1-3) 369 - 400, 2000. https://doi.org/10.57262/ade/1356651389

Information

Published: 2000
First available in Project Euclid: 27 December 2012

zbMATH: 0995.58011
MathSciNet: MR1734547
Digital Object Identifier: 10.57262/ade/1356651389

Subjects:
Primary: 58E15
Secondary: 35J20 , 49J10

Rights: Copyright © 2000 Khayyam Publishing, Inc.

Vol.5 • No. 1-3 • 2000
Back to Top