Open Access
Translator Disclaimer
1999 Solution surfaces for semilinear elliptic equations on rotated domains
Seth Armstrong, Renate Schaaf
Adv. Differential Equations 4(2): 251-274 (1999). DOI: 10.57262/ade/1366291415

Abstract

For the problem $$ \begin{align} \Delta u + \lambda f(u) &= 0 \quad\text{ in } \ \Omega, \;\ \lambda \in {\mathbf {R}} ^{+}, \\ u & = 0 \quad\text{ on } \ \partial \Omega, \end{align} $$ if $\Omega$ and $f$ satisfy certain hypotheses, a parameterized curve of positive solutions $\alpha\mapsto (u(\alpha),\lambda(\alpha))$ has been shown to exist, where $\alpha=max_{\Omega}u$. If $\Omega\subset{\mathbf {R}}^{n}$ is translated by $1/\epsilon$ and then rotated about a coordinate axis to obtain a new domain $\Omega_{\epsilon}\subset{\mathbf {R}}^{n+1}$, it can be shown that a surface of positive rotationally invariant solutions $(\alpha,\epsilon)\mapsto (\hat{u}(\alpha,\epsilon),\hat{\lambda}(\alpha,\epsilon))$ exists for the resulting problem $$ \begin{align} \Delta_{\epsilon}\hat{u} + \hat{\lambda} f(\hat{u}) & = 0 \quad\text{ in } \ \Omega_{\epsilon}, \ \hat{\lambda} \in {\mathbf {R}} ^{+} \\ \hat{u} & = 0 \quad\text{ on } \ \partial \Omega_{\epsilon}, \end{align} $$ where $\Delta_{\epsilon}$ is the Laplacian in the new variables and $(\hat{u}(\alpha,0),\hat{\lambda}(\alpha,0))=(u(\alpha),\lambda(\alpha))$. From this, we can give various examples of problems on domains with a large hole for which the structure of solutions can be well described.

Citation

Download Citation

Seth Armstrong. Renate Schaaf. "Solution surfaces for semilinear elliptic equations on rotated domains." Adv. Differential Equations 4 (2) 251 - 274, 1999. https://doi.org/10.57262/ade/1366291415

Information

Published: 1999
First available in Project Euclid: 18 April 2013

zbMATH: 0953.35045
MathSciNet: MR1674343
Digital Object Identifier: 10.57262/ade/1366291415

Subjects:
Primary: 35J65
Secondary: 34B15 , 47H15

Rights: Copyright © 1999 Khayyam Publishing, Inc.

JOURNAL ARTICLE
24 PAGES


SHARE
Vol.4 • No. 2 • 1999
Back to Top