March/April 2024 High and low perturbations of the critical Choquard equation on the Heisenberg group
Shujie Bai, Dušan D. Repovš, Yueqiang Song
Adv. Differential Equations 29(3/4): 153-178 (March/April 2024). DOI: 10.57262/ade029-0304-153

Abstract

In this paper, our aim is to study thefollowing critical Choquard equation onthe Heisenberg group:\begin{equation*} \begin{cases} \displaystyle{-\Delta_H u }={\mu}|u|^{q-2}u+\int_{\Omega}\frac{|u(\eta)|^{Q_{\lambda}^{\ast}}}{|\eta^{-1}\xi|^{\lambda}}d\eta|u|^{Q_{\lambda}^{\ast}-2}u&\mbox{in }\ \Omega, \\ u=0 &\mbox{on }\ \partial\Omega,\end{cases}\end{equation*}where$\Omega\subset \mathbb{H}^N$is a smooth bounded domain,$\Delta_H$ is the Kohn-Laplacianon the Heisenberg group$\mathbb{H}^N$,$1 < q < 2$ or$2 < q < Q_\lambda^\ast$,$\mu > 0$,$0 < \lambda < Q=2N+2$, and$Q_{\lambda}^{\ast}=\frac{2Q-\lambda}{Q-2}$is the critical exponent.Using the concentration compactnessprinciple and the critical point theory,we prove that the aboveproblem has the least two positivesolutions for$1 < q < 2$ in the caseof low perturbations (small values of$\mu$), andhas a nontrivial solution for$2 < q < Q_\lambda^\ast$ in the case ofhigh perturbations (large values of$\mu$). Moreover, for$1 < q < 2$,we also show that there is a positiveground state solution, and for$2 < q < Q_\lambda^\ast$, there are at least$n$pairs of nontrivial weak solutions.

Citation

Download Citation

Shujie Bai. Dušan D. Repovš. Yueqiang Song. "High and low perturbations of the critical Choquard equation on the Heisenberg group." Adv. Differential Equations 29 (3/4) 153 - 178, March/April 2024. https://doi.org/10.57262/ade029-0304-153

Information

Published: March/April 2024
First available in Project Euclid: 23 October 2023

Digital Object Identifier: 10.57262/ade029-0304-153

Subjects:
Primary: 35J20 , 35R03 , 46E35

Rights: Copyright © 2024 Khayyam Publishing, Inc.

JOURNAL ARTICLE
26 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.29 • No. 3/4 • March/April 2024
Back to Top