July/August 2011 On coupled systems of Schrödinger equations
Z. Chen, W. Zou
Adv. Differential Equations 16(7/8): 775-800 (July/August 2011). DOI: 10.57262/ade/1355703206

Abstract

In this paper we study the following system of nonlinear Schrödinger equations: $$ \begin{cases}-\Delta u +u = f(x,u)+\lambda v, & x\in \mathbb R^N,\\ -\Delta v +v =g(x,v)+\lambda u, & x\in \mathbb R^N.\end{cases} $$ Under some assumptions on $f$ and $g$, we obtain the existence of positive ground and bound states of the coupled system for $\lambda \in (0, 1)$. More importantly, we will give more precise descriptions of the limit behavior and energy estimates of the bound states as $\lambda$ changes.

Citation

Download Citation

Z. Chen. W. Zou. "On coupled systems of Schrödinger equations." Adv. Differential Equations 16 (7/8) 775 - 800, July/August 2011. https://doi.org/10.57262/ade/1355703206

Information

Published: July/August 2011
First available in Project Euclid: 17 December 2012

zbMATH: 1232.35063
MathSciNet: MR2829504
Digital Object Identifier: 10.57262/ade/1355703206

Subjects:
Primary: 35J60 , 35J91 , 35J92 , 35Q55 , 58E30

Rights: Copyright © 2011 Khayyam Publishing, Inc.

Vol.16 • No. 7/8 • July/August 2011
Back to Top