Translator Disclaimer
2007 Instability of vortex solitons for 2D focusing NLS
Tetsu Mizumachi
Adv. Differential Equations 12(3): 241-264 (2007).

Abstract

We study instability of a vortex soliton $e^{i(m\theta+\omega t)}\phi_{\omega,m}(r)$ to $$iu_t+\Delta u+|u|^{p-1}u=0,\quad\text{for $x\in \mathbb{R}^n$, $t>0$,}$$ where $n=2$, $m\in \mathbb{N}$ and $(r,\theta)$ are polar coordinates in $\mathbb{R}^2$. Grillakis \cite{Gr} proved that every radially symmetric standing wave solution is unstable if $p>1+4/n$. However, we do not have any examples of unstable standing wave solutions in the subcritical case $(p <1+n/4)$. Suppose $\phi_{\omega,m}$ is nonnegative. We investigate a limiting profile of $\phi_{\omega,m}$ as $m\to\infty$ and prove that, for every $p>1$, there exists an $m_*\in \mathbb{N}$ such that, for $m\ge m_*$, a vortex soliton $e^{i(m\theta+\omega t)}\phi_{\omega,m}(r)$ becomes unstable under perturbations of the form $e^{i(m+j)\theta}v(r)$ with $1\ll j\ll m$.

Citation

Download Citation

Tetsu Mizumachi. "Instability of vortex solitons for 2D focusing NLS." Adv. Differential Equations 12 (3) 241 - 264, 2007.

Information

Published: 2007
First available in Project Euclid: 18 December 2012

zbMATH: 1158.35089
MathSciNet: MR2296567

Subjects:
Primary: 35Q55
Secondary: 35B35, 35Q51

Rights: Copyright © 2007 Khayyam Publishing, Inc.

JOURNAL ARTICLE
24 PAGES


SHARE
Vol.12 • No. 3 • 2007
Back to Top