Abstract
In this paper we prove existence of a nontrivial solution for Hamiltonian systems of the form $$ \begin{cases} -\triangle u = \delta u + \gamma v + \frac{\partial H}{\partial v} (x, u, v) \\ -\triangle v = \lambda u + \delta v + \frac{\partial H}{\partial u} (x, u, v) & \mbox{in }\;\; \Omega, \end{cases} $$ subject to Dirichlet boundary conditions. The method used is variational through a generalized mountain pass theorem for indefinite functionals due to Benci-Rabinowitz in a version introduced by Felmer
Citation
D. G. De Figueiredo. C. A. Magalhães. "On nonquadratic Hamiltonian elliptic systems." Adv. Differential Equations 1 (5) 881 - 898, 1996. https://doi.org/10.57262/ade/1366896023
Information