Abstract
We produce special Lagrangian $T^n$-fibrations on the generic regions of some Calabi–Yau hypersurfaces in the Fermat family $X_s = \{Z_0\dots Z_{n+1}+ e^{-s} (Z_0^{n+2}+ \dots + Z_{n+1}^{n+2}) = 0\}\subset \mathbb{CP}^{n+1}$ near the large complex structure limit $s\to \infty$.
Citation
Yang Li. "Strominger–Yau–Zaslow conjecture for Calabi–Yau hypersurfaces in the Fermat family." Acta Math. 229 (1) 1 - 53, September 2022. https://doi.org/10.4310/ACTA.2022.v229.n1.a1
Information