Open Access
2010 Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane
Michael T. Lacey, Eric T. Sawyer, Ignacio Uriarte-Tuero
Author Affiliations +
Acta Math. 204(2): 273-292 (2010). DOI: 10.1007/s11511-010-0048-5

Abstract

Let $ E \subset \mathbb{C} $ be a compact set, $ g:\mathbb{C} \to \mathbb{C} $ be a K-quasiconformal map, and let 0 < t < 2. Let $ {\mathcal{H}^t} $ denote t-dimensional Hausdorff measure. Then $ {\mathcal{H}^t}(E) = 0\quad \Rightarrow \quad {\mathcal{H}^{t'}}\left( {gE} \right) = 0,\quad t' = \frac{{2Kt}}{{2 + \left( {K - 1} \right)t}}. $

This is a refinement of a set of inequalities on the distortion of Hausdorff dimensions by quasiconformal maps proved by K. Astala in [2] and answers in the positive a conjecture of K. Astala in op. cit.

Funding Statement

M.T. Lacey was supported in part by a grant from the NSF.
E. T. Sawyer was supported in part by a grant from the NSERC.

Citation

Download Citation

Michael T. Lacey. Eric T. Sawyer. Ignacio Uriarte-Tuero. "Astala’s conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane." Acta Math. 204 (2) 273 - 292, 2010. https://doi.org/10.1007/s11511-010-0048-5

Information

Received: 11 June 2008; Published: 2010
First available in Project Euclid: 31 January 2017

zbMATH: 1211.30036
MathSciNet: MR2653055
Digital Object Identifier: 10.1007/s11511-010-0048-5

Subjects:
Primary: 30C62 , 35J15 , 35J70

Keywords: Hausdorff measure , Quasiconformal , Removability

Rights: 2010 © Institut Mittag-Leffler

Vol.204 • No. 2 • 2010
Back to Top