Open Access
1998 Variational inequalities for energy functionals with nonstandard growth conditions
Martin Fuchs, Li Gongbao
Abstr. Appl. Anal. 3(1-2): 41-64 (1998). DOI: 10.1155/S1085337598000438

Abstract

We consider the obstacle problem {minimizeI(u)=ΩG(u)dxamong functionsu:ΩRsuchthatu|Ω=0anduΦa.e. for a given function ΦC2(Ω¯),Φ|Ω<0 and a bounded Lipschitz domain Ω in Rn. The growth properties of the convex integrand G are described in terms of a N-function A:[0,)[0,) with limt¯A(t)t2<. If n3, we prove, under certain assumptions on G,C1,-partial regularity for the solution to the above obstacle problem. For the special case where A(t)=tln(1+t) we obtain C1,α-partial regularity when n4. One of the main features of the paper is that we do not require any power growth of G.

Citation

Download Citation

Martin Fuchs. Li Gongbao. "Variational inequalities for energy functionals with nonstandard growth conditions." Abstr. Appl. Anal. 3 (1-2) 41 - 64, 1998. https://doi.org/10.1155/S1085337598000438

Information

Published: 1998
First available in Project Euclid: 8 April 2003

zbMATH: 0987.49019
MathSciNet: MR1700276
Digital Object Identifier: 10.1155/S1085337598000438

Subjects:
Primary: 35J70 , 49N60
Secondary: 46E35

Keywords: nonstandard growth , Orlicz-Sobolev spaces , regularity theory , variational inequalities

Rights: Copyright © 1998 Hindawi

Vol.3 • No. 1-2 • 1998
Back to Top