Open Access
2015 A New Grünwald-Letnikov Derivative Derived from a Second-Order Scheme
B. A. Jacobs
Abstr. Appl. Anal. 2015: 1-9 (2015). DOI: 10.1155/2015/952057
Abstract

A novel derivation of a second-order accurate Grünwald-Letnikov-type approximation to the fractional derivative of a function is presented. This scheme is shown to be second-order accurate under certain modifications to account for poor accuracy in approximating the asymptotic behavior near the lower limit of differentiation. Some example functions are chosen and numerical results are presented to illustrate the efficacy of this new method over some other popular choices for discretizing fractional derivatives.

References

1.

Q. Zeng, H. Li, and D. Liu, “Anomalous fractional diffusion equation for transport phenomena,” Communications in Nonlinear Science and Numerical Simulation, vol. 4, no. 2, pp. 99–104, 1999. MR1723813 10.1016/S1007-5704(99)90019-9 0934.60075 Q. Zeng, H. Li, and D. Liu, “Anomalous fractional diffusion equation for transport phenomena,” Communications in Nonlinear Science and Numerical Simulation, vol. 4, no. 2, pp. 99–104, 1999. MR1723813 10.1016/S1007-5704(99)90019-9 0934.60075

2.

D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation,” Water Resources Research, vol. 36, no. 6, pp. 1403–1412, 2000. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation,” Water Resources Research, vol. 36, no. 6, pp. 1403–1412, 2000.

3.

J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998. MR1665221 10.1016/S0045-7825(98)00108-X 0942.76077 J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998. MR1665221 10.1016/S0045-7825(98)00108-X 0942.76077

4.

R. Metzler, W. G. Glöckle, and T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion,” Physica A: Statistical Mechanics and its Applications, vol. 211, no. 1, pp. 13–24, 1994. R. Metzler, W. G. Glöckle, and T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion,” Physica A: Statistical Mechanics and its Applications, vol. 211, no. 1, pp. 13–24, 1994.

5.

V. Gafiychuk, B. Datsko, and V. Meleshko, “Mathematical modeling of time fractional reaction-diffusion systems,” Journal of Computational and Applied Mathematics, vol. 220, no. 1-2, pp. 215–225, 2008. MR2444166 10.1016/j.cam.2007.08.011 1152.45008 V. Gafiychuk, B. Datsko, and V. Meleshko, “Mathematical modeling of time fractional reaction-diffusion systems,” Journal of Computational and Applied Mathematics, vol. 220, no. 1-2, pp. 215–225, 2008. MR2444166 10.1016/j.cam.2007.08.011 1152.45008

6.

B. Y. Datsko and V. V. Gafiychuk, “Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives,” Journal of Mathematical Sciences, vol. 165, no. 3, pp. 392–402, 2010. 1189.35151 10.1016/j.camwa.2009.05.013 B. Y. Datsko and V. V. Gafiychuk, “Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives,” Journal of Mathematical Sciences, vol. 165, no. 3, pp. 392–402, 2010. 1189.35151 10.1016/j.camwa.2009.05.013

7.

M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations,” Applied Numerical Mathematics, vol. 56, no. 1, pp. 80–90, 2006. MR2186432 10.1016/j.apnum.2005.02.008 1086.65087 M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations,” Applied Numerical Mathematics, vol. 56, no. 1, pp. 80–90, 2006. MR2186432 10.1016/j.apnum.2005.02.008 1086.65087

8.

R. Scherer, S. L. Kalla, L. Boyadjiev, and B. Al-Saqabi, “Numerical treatment of fractional heat equations,” Applied Numerical Mathematics, vol. 58, no. 8, pp. 1212–1223, 2008. MR2428973 1143.65105 10.1016/j.apnum.2007.06.003 R. Scherer, S. L. Kalla, L. Boyadjiev, and B. Al-Saqabi, “Numerical treatment of fractional heat equations,” Applied Numerical Mathematics, vol. 58, no. 8, pp. 1212–1223, 2008. MR2428973 1143.65105 10.1016/j.apnum.2007.06.003

9.

A. M. El-Sayed, I. L. El-Kalla, and E. A. Ziada, “Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations,” Applied Numerical Mathematics, vol. 60, no. 8, pp. 788–797, 2010. MR2647433 10.1016/j.apnum.2010.02.007 1192.65092 A. M. El-Sayed, I. L. El-Kalla, and E. A. Ziada, “Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations,” Applied Numerical Mathematics, vol. 60, no. 8, pp. 788–797, 2010. MR2647433 10.1016/j.apnum.2010.02.007 1192.65092

10.

\.I. Karatay, R. Ş. Bayramoğlu, and A. Şahin, “Implicit difference approximation for the time fractional heat equation with the nonlocal condition,” Applied Numerical Mathematics, vol. 61, no. 12, pp. 1281–1288, 2011. MR2851123 10.1016/j.apnum.2011.08.007 1266.65146 \.I. Karatay, R. Ş. Bayramoğlu, and A. Şahin, “Implicit difference approximation for the time fractional heat equation with the nonlocal condition,” Applied Numerical Mathematics, vol. 61, no. 12, pp. 1281–1288, 2011. MR2851123 10.1016/j.apnum.2011.08.007 1266.65146

11.

L. Su, W. Wang, and H. Wang, “A characteristic difference method for the transient fractional convection-diffusion equations,” Applied Numerical Mathematics, vol. 61, no. 8, pp. 946–960, 2011. MR2802687 10.1016/j.apnum.2011.02.007 1225.65085 L. Su, W. Wang, and H. Wang, “A characteristic difference method for the transient fractional convection-diffusion equations,” Applied Numerical Mathematics, vol. 61, no. 8, pp. 946–960, 2011. MR2802687 10.1016/j.apnum.2011.02.007 1225.65085

12.

M. Chen, W. Deng, and Y. Wu, “Superlinearly convergent algorithms for the two-dimensional space-time caputo-riesz fractional diffusion equation,” Applied Numerical Mathematics, vol. 70, pp. 22–41, 2013. MR3054255 10.1016/j.apnum.2013.03.006 1283.65082 M. Chen, W. Deng, and Y. Wu, “Superlinearly convergent algorithms for the two-dimensional space-time caputo-riesz fractional diffusion equation,” Applied Numerical Mathematics, vol. 70, pp. 22–41, 2013. MR3054255 10.1016/j.apnum.2013.03.006 1283.65082

13.

C. Tadjeran and M. M. Meerschaert, “A second-order accurate numerical method for the two-dimensional fractional diffusion equation,” Journal of Computational Physics, vol. 220, no. 2, pp. 813–823, 2007. MR2284325 1107.65079 10.1016/j.jcp.2006.05.030 C. Tadjeran and M. M. Meerschaert, “A second-order accurate numerical method for the two-dimensional fractional diffusion equation,” Journal of Computational Physics, vol. 220, no. 2, pp. 813–823, 2007. MR2284325 1107.65079 10.1016/j.jcp.2006.05.030

14.

K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002. MR1926466 10.1023/A:1016592219341 1009.65049 K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002. MR1926466 10.1023/A:1016592219341 1009.65049

15.

A. Mohebbi, M. Abbaszadeh, and M. Dehghan, “A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term,” Journal of Computational Physics, vol. 240, pp. 36–48, 2013. MR3039243 1287.65064 10.1016/j.jcp.2012.11.052 A. Mohebbi, M. Abbaszadeh, and M. Dehghan, “A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term,” Journal of Computational Physics, vol. 240, pp. 36–48, 2013. MR3039243 1287.65064 10.1016/j.jcp.2012.11.052

16.

M. Cui, “Compact alternating direction implicit method for two-dimensional time fractional diffusion equation,” Journal of Computational Physics, vol. 231, no. 6, pp. 2621–2633, 2012. MR2881036 1242.65158 10.1016/j.jcp.2011.12.010 M. Cui, “Compact alternating direction implicit method for two-dimensional time fractional diffusion equation,” Journal of Computational Physics, vol. 231, no. 6, pp. 2621–2633, 2012. MR2881036 1242.65158 10.1016/j.jcp.2011.12.010

17.

M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, “Finite difference methods for two-dimensional fractional dispersion equation,” Journal of Computational Physics, vol. 211, no. 1, pp. 249–261, 2006. MR2168877 10.1016/j.jcp.2005.05.017 1085.65080 M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, “Finite difference methods for two-dimensional fractional dispersion equation,” Journal of Computational Physics, vol. 211, no. 1, pp. 249–261, 2006. MR2168877 10.1016/j.jcp.2005.05.017 1085.65080

18.

V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias, and H. R. Hicks, “Numerical methods for the solution of partial differential equations of fractional order,” Journal of Computational Physics, vol. 192, no. 2, pp. 406–421, 2003. MR2020744 1047.76075 10.1016/j.jcp.2003.07.008 V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias, and H. R. Hicks, “Numerical methods for the solution of partial differential equations of fractional order,” Journal of Computational Physics, vol. 192, no. 2, pp. 406–421, 2003. MR2020744 1047.76075 10.1016/j.jcp.2003.07.008

19.

S. Momani and Z. Odibat, “Numerical comparison of methods for solving linear differential equations of fractional order,” Chaos, Solitons & Fractals, vol. 31, no. 5, pp. 1248–1255, 2007. 1137.65450 10.1016/j.chaos.2005.10.068 S. Momani and Z. Odibat, “Numerical comparison of methods for solving linear differential equations of fractional order,” Chaos, Solitons & Fractals, vol. 31, no. 5, pp. 1248–1255, 2007. 1137.65450 10.1016/j.chaos.2005.10.068

20.

Z. Odibat and S. Momani, “Numerical methods for nonlinear partial differential equations of fractional order,” Applied Mathematical Modelling, vol. 32, no. 1, pp. 28–39, 2008. 1133.65116 10.1016/j.apm.2006.10.025 MR2308776 Z. Odibat and S. Momani, “Numerical methods for nonlinear partial differential equations of fractional order,” Applied Mathematical Modelling, vol. 32, no. 1, pp. 28–39, 2008. 1133.65116 10.1016/j.apm.2006.10.025 MR2308776

21.

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. MR0361633 0292.26011 K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. MR0361633 0292.26011

22.

I. Podlubny, Fractional Dfferential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, 1999. MR1658022 1056.93542 10.1109/9.739144 I. Podlubny, Fractional Dfferential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, 1999. MR1658022 1056.93542 10.1109/9.739144

23.

C. Li and W. Deng, “Remarks on fractional derivatives,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 777–784, 2007. MR2323083 1125.26009 10.1016/j.amc.2006.08.163 C. Li and W. Deng, “Remarks on fractional derivatives,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 777–784, 2007. MR2323083 1125.26009 10.1016/j.amc.2006.08.163

24.

S. B. Yuste and L. Acedo, “An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations,” SIAM Journal on Numerical Analysis, vol. 42, no. 5, pp. 1862–1874, 2005. MR2139227 10.1137/030602666 1119.65379 S. B. Yuste and L. Acedo, “An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations,” SIAM Journal on Numerical Analysis, vol. 42, no. 5, pp. 1862–1874, 2005. MR2139227 10.1137/030602666 1119.65379

25.

M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65–77, 2004. MR2091131 10.1016/j.cam.2004.01.033 1126.76346 M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65–77, 2004. MR2091131 10.1016/j.cam.2004.01.033 1126.76346

26.

I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002. MR1967839 1042.26003 I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 367–386, 2002. MR1967839 1042.26003

27.

A. Compte and R. Metzler, “The generalized Cattaneo equation for the description of anomalous transport processes,” Journal of Physics A: Mathematical and General, vol. 30, no. 21, pp. 7277–7289, 1997. \endinput MR1603438 10.1088/0305-4470/30/21/006 0941.82046 A. Compte and R. Metzler, “The generalized Cattaneo equation for the description of anomalous transport processes,” Journal of Physics A: Mathematical and General, vol. 30, no. 21, pp. 7277–7289, 1997. \endinput MR1603438 10.1088/0305-4470/30/21/006 0941.82046
Copyright © 2015 Hindawi
B. A. Jacobs "A New Grünwald-Letnikov Derivative Derived from a Second-Order Scheme," Abstract and Applied Analysis 2015(none), 1-9, (2015). https://doi.org/10.1155/2015/952057
Published: 2015
Vol.2015 • 2015
Back to Top