We propose a fractional order SIRC epidemic model to describe the dynamics of *Salmonella* bacterial infection in animal herds. The infection-free and endemic steady sates, of such model, are asymptotically stable under some conditions. The basic reproduction number ${\mathcal{R}}_{0}$ is calculated, using next-generation matrix method, in terms of contact rate, recovery rate, and other parameters in the model. The numerical simulations of the fractional order SIRC model are performed by Caputo’s derivative and using unconditionally stable implicit scheme. The obtained results give insight to the modelers and infectious disease specialists.

## References

F. A. Rihan, “Numerical modeling of fractional-order biological systems,”

*Abstract and Applied Analysis*, vol. 2013, Article ID 816803, 11 pages, 2013. MR3090284 10.1155/2013/816803 07095387 F. A. Rihan, “Numerical modeling of fractional-order biological systems,”*Abstract and Applied Analysis*, vol. 2013, Article ID 816803, 11 pages, 2013. MR3090284 10.1155/2013/816803 07095387 F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,”

*Journal of Computational and Applied Mathematics*, vol. 118, no. 1-2, pp. 283–299, 2000. MR1765955 10.1016/S0377-0427(00)00294-6 0970.45005 F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,”*Journal of Computational and Applied Mathematics*, vol. 118, no. 1-2, pp. 283–299, 2000. MR1765955 10.1016/S0377-0427(00)00294-6 0970.45005 L. Debnath, “Recent applications of fractional calculus to science and engineering,”

*International Journal of Mathematics and Mathematical Sciences*, no. 54, pp. 3413–3442, 2003. MR2025566 10.1155/S0161171203301486 1036.26004 L. Debnath, “Recent applications of fractional calculus to science and engineering,”*International Journal of Mathematics and Mathematical Sciences*, no. 54, pp. 3413–3442, 2003. MR2025566 10.1155/S0161171203301486 1036.26004 A. M. A. El-Sayed, “Nonlinear functional-differential equations of arbitrary orders,”

*Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal A: Theory and Methods*, vol. 33, no. 2, pp. 181–186, 1998. MR1621105 0934.34055 10.1016/S0362-546X(97)00525-7 A. M. A. El-Sayed, “Nonlinear functional-differential equations of arbitrary orders,”*Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal A: Theory and Methods*, vol. 33, no. 2, pp. 181–186, 1998. MR1621105 0934.34055 10.1016/S0362-546X(97)00525-7 A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “On the fractional-order logistic equation,”

*Applied Mathematics Letters. An International Journal of Rapid Publication*, vol. 20, no. 7, pp. 817–823, 2007. MR2314715 10.1016/j.aml.2006.08.013 1140.34302 A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “On the fractional-order logistic equation,”*Applied Mathematics Letters. An International Journal of Rapid Publication*, vol. 20, no. 7, pp. 817–823, 2007. MR2314715 10.1016/j.aml.2006.08.013 1140.34302 E. R. Hilfer,

*Applications of Fractional Calculus in Physics*, World Scientific, River Edge, NJ, USA, 2000. MR1890104 0998.26002 E. R. Hilfer,*Applications of Fractional Calculus in Physics*, World Scientific, River Edge, NJ, USA, 2000. MR1890104 0998.26002 D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo,

*Fractional Calculus*, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, 2012, Models and numerical methods. MR2894576 1248.26011 D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo,*Fractional Calculus*, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, 2012, Models and numerical methods. MR2894576 1248.26011 W. Lin, “Global existence theory and chaos control of fractional differential equations,”

*Journal of Mathematical Analysis and Applications*, vol. 332, no. 1, pp. 709–726, 2007. MR2319693 10.1016/j.jmaa.2006.10.040 1113.37016 W. Lin, “Global existence theory and chaos control of fractional differential equations,”*Journal of Mathematical Analysis and Applications*, vol. 332, no. 1, pp. 709–726, 2007. MR2319693 10.1016/j.jmaa.2006.10.040 1113.37016 K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,”

*Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems*, vol. 29, no. 1–4, pp. 3–22, 2002, Fractional order calculus and its applications. MR1926466 10.1023/A:1016592219341 1009.65049 K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,”*Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems*, vol. 29, no. 1–4, pp. 3–22, 2002, Fractional order calculus and its applications. MR1926466 10.1023/A:1016592219341 1009.65049 F. A. Rihan, “Computational methods for delay parabolic and time-fractional partial differential equations,”

*Numerical Methods for Partial Differential Equations. An International Journal*, vol. 26, no. 6, pp. 1556–1571, 2010. MR2732396 1204.65114 10.1002/num.20504 F. A. Rihan, “Computational methods for delay parabolic and time-fractional partial differential equations,”*Numerical Methods for Partial Differential Equations. An International Journal*, vol. 26, no. 6, pp. 1556–1571, 2010. MR2732396 1204.65114 10.1002/num.20504 P. Bouvet, “Human Salmonellosis surveillance in france: recent data from the national reference center,”

*Salmonella and Salmonellosis*, pp. 411–416, 2002. P. Bouvet, “Human Salmonellosis surveillance in france: recent data from the national reference center,”*Salmonella and Salmonellosis*, pp. 411–416, 2002. D. S. Jones, M. J. Plank, and B. D. Sleeman,

*Differential Equations and Mathematical Biology*, Mathematical & Computational Biology, 2008. 1298.92003 D. S. Jones, M. J. Plank, and B. D. Sleeman,*Differential Equations and Mathematical Biology*, Mathematical & Computational Biology, 2008. 1298.92003 D. Kaplan and L. Glass,

*Understanding nonlinear dynamics*, vol. 19 of*Texts in Applied Mathematics*, Springer, New York, NY, USA, 1995. MR1344914 0823.34002 D. Kaplan and L. Glass,*Understanding nonlinear dynamics*, vol. 19 of*Texts in Applied Mathematics*, Springer, New York, NY, USA, 1995. MR1344914 0823.34002 J. D. Murray,

*Mathematical Biology. II*, Interdisciplinary Applied Mathematics, Springer, 3rd edition, 2003, Spatial models and biomedical applications. MR1952568 J. D. Murray,*Mathematical Biology. II*, Interdisciplinary Applied Mathematics, Springer, 3rd edition, 2003, Spatial models and biomedical applications. MR1952568 M. Safan and F. A. Rihan, “Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation,”

*Mathematics and Computers in Simulation*, vol. 96, pp. 195–206, 2014. MR3127780 10.1016/j.matcom.2011.07.007 M. Safan and F. A. Rihan, “Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation,”*Mathematics and Computers in Simulation*, vol. 96, pp. 195–206, 2014. MR3127780 10.1016/j.matcom.2011.07.007 W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics,”

*Proceedings of Royal Society of London*, vol. 115, no. 722, pp. 700–721, 1927. 53.0517.01 10.1098/rspa.1927.0118 W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics,”*Proceedings of Royal Society of London*, vol. 115, no. 722, pp. 700–721, 1927. 53.0517.01 10.1098/rspa.1927.0118 R. Casagrandi, L. Bolzoni, S. A. Levin, and V. Andreasen, “The SIRC model and influenza A,”

*Mathematical Biosciences*, vol. 200, no. 2, pp. 152–169, 2006. MR2225509 10.1016/j.mbs.2005.12.029 1089.92043 R. Casagrandi, L. Bolzoni, S. A. Levin, and V. Andreasen, “The SIRC model and influenza A,”*Mathematical Biosciences*, vol. 200, no. 2, pp. 152–169, 2006. MR2225509 10.1016/j.mbs.2005.12.029 1089.92043 M. El-Shahed and A. Alsaedi, “The fractional SIRC model and influenza A,”

*Mathematical Problems in Engineering*, vol. 2011, Article ID 480378, 9 pages, 2011. MR2853306 10.1155/2011/480378 1235.92033 M. El-Shahed and A. Alsaedi, “The fractional SIRC model and influenza A,”*Mathematical Problems in Engineering*, vol. 2011, Article ID 480378, 9 pages, 2011. MR2853306 10.1155/2011/480378 1235.92033 A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,

*Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, The Netherlands, 2006. MR2218073 1092.45003 A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,*Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, The Netherlands, 2006. MR2218073 1092.45003 I. Podlubny,

*Fractional Differential Equations*, Mathematics in Science and Engineering, Academic Press, 1999, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. MR1658022 0924.34008 I. Podlubny,*Fractional Differential Equations*, Mathematics in Science and Engineering, Academic Press, 1999, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. MR1658022 0924.34008 S. G. Samko, A. A. Kilbas, and O. I. Marichev,

*Fractional integrals and derivatives*, Gordon and Breach Science Publishers, 1993. MR1347689 0818.26003 S. G. Samko, A. A. Kilbas, and O. I. Marichev,*Fractional integrals and derivatives*, Gordon and Breach Science Publishers, 1993. MR1347689 0818.26003 Z. M. Odibat and N. T. Shawagfeh, “Generalized Taylor's formula,”

*Applied Mathematics and Computation*, vol. 186, no. 1, pp. 286–293, 2007. MR2316514 10.1016/j.amc.2006.07.102 1122.26006 Z. M. Odibat and N. T. Shawagfeh, “Generalized Taylor's formula,”*Applied Mathematics and Computation*, vol. 186, no. 1, pp. 286–293, 2007. MR2316514 10.1016/j.amc.2006.07.102 1122.26006 L. Jódar, R. J. Villanueva, A. J. Arenas, and G. C. González, “Nonstandard numerical methods for a mathematical model for influenza disease,”

*Mathematics and Computers in Simulation*, vol. 79, no. 3, pp. 622–633, 2008. MR2477552 10.1016/j.matcom.2008.04.008 1151.92018 L. Jódar, R. J. Villanueva, A. J. Arenas, and G. C. González, “Nonstandard numerical methods for a mathematical model for influenza disease,”*Mathematics and Computers in Simulation*, vol. 79, no. 3, pp. 622–633, 2008. MR2477552 10.1016/j.matcom.2008.04.008 1151.92018 H. Xu, “Analytical approximations for a population growth model with fractional order,”

*Communications in Nonlinear Science and Numerical Simulation*, vol. 14, no. 5, pp. 1978–1983, 2009. 1221.65210 10.1016/j.cnsns.2008.07.006 H. Xu, “Analytical approximations for a population growth model with fractional order,”*Communications in Nonlinear Science and Numerical Simulation*, vol. 14, no. 5, pp. 1978–1983, 2009. 1221.65210 10.1016/j.cnsns.2008.07.006 O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and the computation of the basic reproduction ratio ${R}_{0}$ in models for infectious diseases in heterogeneous populations,”

*Journal of Mathematical Biology*, vol. 28, no. 4, pp. 365–382, 1990. MR1057044 10.1007/BF00178324 O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and the computation of the basic reproduction ratio ${R}_{0}$ in models for infectious diseases in heterogeneous populations,”*Journal of Mathematical Biology*, vol. 28, no. 4, pp. 365–382, 1990. MR1057044 10.1007/BF00178324 D. Matignon, “Stability results for fractional differential equations with applications to control processing,”

*Computational Engineering in System Application*, vol. 2, pp. 963–968, 1996. D. Matignon, “Stability results for fractional differential equations with applications to control processing,”*Computational Engineering in System Application*, vol. 2, pp. 963–968, 1996. E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems,”

*Physics Letters A*, vol. 358, no. 1, pp. 1–4, 2006. MR2244918 10.1016/j.physleta.2006.04.087 1142.30303 E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems,”*Physics Letters A*, vol. 358, no. 1, pp. 1–4, 2006. MR2244918 10.1016/j.physleta.2006.04.087 1142.30303 T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,”

*Proceedings of the American Mathematical Society*, vol. 136, no. 5, pp. 1861–1869, 2008. MR2373618 10.1090/S0002-9939-07-09055-7 1145.54026 T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,”*Proceedings of the American Mathematical Society*, vol. 136, no. 5, pp. 1861–1869, 2008. MR2373618 10.1090/S0002-9939-07-09055-7 1145.54026 R. Anguelov and J. M.-S. Lubuma, “Nonstandard finite difference method by nonlocal approximation,”

*Mathematics and Computers in Simulation*, vol. 61, no. 3–6, pp. 465–475, 2003. MR1984145 10.1016/S0378-4754(02)00106-4 1015.65034 R. Anguelov and J. M.-S. Lubuma, “Nonstandard finite difference method by nonlocal approximation,”*Mathematics and Computers in Simulation*, vol. 61, no. 3–6, pp. 465–475, 2003. MR1984145 10.1016/S0378-4754(02)00106-4 1015.65034 K. Diethelm, “An algorithm for the numerical solution of differential equations of fractional order,”

*Electronic Transactions on Numerical Analysis*, vol. 5, pp. 1–6, 1997. MR1447831 0890.65071 K. Diethelm, “An algorithm for the numerical solution of differential equations of fractional order,”*Electronic Transactions on Numerical Analysis*, vol. 5, pp. 1–6, 1997. MR1447831 0890.65071 K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,”

*Journal of Mathematical Analysis and Applications*, vol. 265, no. 2, pp. 229–248, 2002. MR1876137 10.1006/jmaa.2000.7194 1014.34003 K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,”*Journal of Mathematical Analysis and Applications*, vol. 265, no. 2, pp. 229–248, 2002. MR1876137 10.1006/jmaa.2000.7194 1014.34003 P. Chapagain, J. S. Van Kessel, J. K. Karns et al., “A mathematical model of the dynamics of Salmonella cerro infection in a us dairy herd,”

*Epidemiology & Infection*, vol. 136, pp. 263–272, 2008. \endinput P. Chapagain, J. S. Van Kessel, J. K. Karns et al., “A mathematical model of the dynamics of Salmonella cerro infection in a us dairy herd,”*Epidemiology & Infection*, vol. 136, pp. 263–272, 2008. \endinput*Salmonella*Bacterial Infection," Abstract and Applied Analysis 2014(none), 1-9, (2014). https://doi.org/10.1155/2014/136263