Open Access
2013 A Global Curvature Pinching Result of the First Eigenvalue of the Laplacian on Riemannian Manifolds
Peihe Wang, Ying Li
Abstr. Appl. Anal. 2013: 1-5 (2013). DOI: 10.1155/2013/237418

Abstract

The paper starts with a discussion involving the Sobolev constant on geodesic balls and then follows with a derivation of a lower bound for the first eigenvalue of the Laplacian on manifolds with small negative curvature. The derivation involves Moser iteration.

Citation

Download Citation

Peihe Wang. Ying Li. "A Global Curvature Pinching Result of the First Eigenvalue of the Laplacian on Riemannian Manifolds." Abstr. Appl. Anal. 2013 1 - 5, 2013. https://doi.org/10.1155/2013/237418

Information

Published: 2013
First available in Project Euclid: 27 February 2014

zbMATH: 1275.53040
MathSciNet: MR3039135
Digital Object Identifier: 10.1155/2013/237418

Rights: Copyright © 2013 Hindawi

Vol.2013 • 2013
Back to Top