Open Access
2013 A Characterization of Semilinear Dense Range Operators and Applications
H. Leiva, N. Merentes, J. Sanchez
Abstr. Appl. Anal. 2013: 1-11 (2013). DOI: 10.1155/2013/729093

Abstract

We characterize a broad class of semilinear dense range operators G H : W Z given by the following formula, G H w = G w + H ( w ) , w W , where Z , W are Hilbert spaces, G L ( W , Z ) , and H : W Z is a suitable nonlinear operator. First, we give a necessary and sufficient condition for the linear operator G to have dense range. Second, under some condition on the nonlinear term H , we prove the following statement: If R a n g ( G ) ¯ = Z , then R a n g ( G H ) ¯ = Z and for all z Z there exists a sequence { w α Z : 0 < α 1 } given by w α = G * ( α I + G G * ) - 1 ( z - H ( w α ) ) , such that l i m α 0 + { G u α + H ( u α ) } = z . Finally, we apply this result to prove the approximate controllability of the following semilinear evolution equation: z = A z + B u ( t ) + F ( t , z , u ( t ) ) , z Z , u U , t > 0 , where Z , U are Hilbert spaces, A : D ( A ) Z Z is the infinitesimal generator of strongly continuous compact semigroup { T ( t ) } t 0 in Z , B L ( U , Z ) , the control function u belongs to L 2 ( 0 , τ ; U ) , and F : [ 0 , τ ] × Z × U Z is a suitable function. As a particular case we consider the controlled semilinear heat equation.

Citation

Download Citation

H. Leiva. N. Merentes. J. Sanchez. "A Characterization of Semilinear Dense Range Operators and Applications." Abstr. Appl. Anal. 2013 1 - 11, 2013. https://doi.org/10.1155/2013/729093

Information

Published: 2013
First available in Project Euclid: 27 February 2014

zbMATH: 1287.47054
MathSciNet: MR3035310
Digital Object Identifier: 10.1155/2013/729093

Rights: Copyright © 2013 Hindawi

Vol.2013 • 2013
Back to Top