Abstract
We first introduce an implicit relaxed method with regularization for finding a common element of the set of fixed points of an asymptotically strict pseudocontractive mapping in the intermediate sense and the set of solutions of the minimization problem (MP) for a convex and continuously Frechet differentiable functional in the setting of Hilbert spaces. The implicit relaxed method with regularization is based on three well-known methods: the extragradient method, viscosity approximation method, and gradient projection algorithm with regularization. We derive a weak convergence theorem for two sequences generated by this method. On the other hand, we also prove a new strong convergence theorem by an implicit hybrid method with regularization for the MP and the mapping . The implicit hybrid method with regularization is based on four well-known methods: the CQ method, extragradient method, viscosity approximation method, and gradient projection algorithm with regularization.
Citation
Lu-Chuan Ceng. Qamrul Hasan Ansari. Ching-Feng Wen. "Implicit Relaxed and Hybrid Methods with Regularization for Minimization Problems and Asymptotically Strict Pseudocontractive Mappings in the Intermediate Sense." Abstr. Appl. Anal. 2013 (SI60) 1 - 14, 2013. https://doi.org/10.1155/2013/854297
Information