Abstract
In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra or the union of finitely many generalized polyhedra. Dropping the compactness assumption, we establish some results on structure of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set, and Pareto optimal value set of (SVOP) and on connectedness of Pareto solution set and Pareto optimal value set of (SVOP). In particular, we improved and generalize, Arrow, Barankin, and Blackwell’s classical results in Euclidean spaces and Zheng and Yang’s results in general Banach spaces.
Citation
Qinghai He. Weili Kong. "Structure of Pareto Solutions of Generalized Polyhedral-Valued Vector Optimization Problems in Banach Spaces." Abstr. Appl. Anal. 2013 (SI26) 1 - 10, 2013. https://doi.org/10.1155/2013/619206