Open Access
2012 Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
I. J. Cabrera, J. Harjani, K. B. Sadarangani
Abstr. Appl. Anal. 2012(SI12): 1-15 (2012). DOI: 10.1155/2012/826580

Abstract

We are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , 2 < α 3 , u ( 0 ) = u ' ( 0 ) = 0 , u ' ( 1 ) = i = 1 m - 2 a i u ' ( ξ i ) , where D 0 + α denotes the standard Riemann-Liouville fractional derivative, f : [ 0,1 ] × [ 0 , ) [ 0 , ) is a continuous function, a i 0 for i = 1,2 , , m - 2 , and 0 < ξ 1 < ξ 2 < < ξ m - 2 < 1 . Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also presented to illustrate the main results.

Citation

Download Citation

I. J. Cabrera. J. Harjani. K. B. Sadarangani. "Positive and Nondecreasing Solutions to an m-Point Boundary Value Problem for Nonlinear Fractional Differential Equation." Abstr. Appl. Anal. 2012 (SI12) 1 - 15, 2012. https://doi.org/10.1155/2012/826580

Information

Published: 2012
First available in Project Euclid: 1 April 2013

zbMATH: 1234.34006
MathSciNet: MR2872307
Digital Object Identifier: 10.1155/2012/826580

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI12 • 2012
Back to Top