Open Access
2010 Global Behavior of the Difference Equation x n + 1 = ( p + x n - 1 ) / ( q x n + x n - 1 )
Taixiang Sun, Hongjian Xi, Hui Wu, Caihong Han
Abstr. Appl. Anal. 2010: 1-6 (2010). DOI: 10.1155/2010/237129

Abstract

We study the following difference equation x n + 1 = ( p + x n - 1 ) / ( q x n + x n - 1 ) , n = 0,1 , , where p , q ( 0 , + ) and the initial conditions x - 1 , x 0 ( 0 , + ) . We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed by Kulenović and Ladas (2002) is true.

Citation

Download Citation

Taixiang Sun. Hongjian Xi. Hui Wu. Caihong Han. "Global Behavior of the Difference Equation x n + 1 = ( p + x n - 1 ) / ( q x n + x n - 1 ) ." Abstr. Appl. Anal. 2010 1 - 6, 2010. https://doi.org/10.1155/2010/237129

Information

Published: 2010
First available in Project Euclid: 1 November 2010

zbMATH: 1203.39007
MathSciNet: MR2660389
Digital Object Identifier: 10.1155/2010/237129

Rights: Copyright © 2010 Hindawi

Vol.2010 • 2010
Back to Top