Taiwanese Journal of Mathematics

SOME FAMILIES OF GENERATING FUNCTIONS FOR THE q-KONHAUSER POLYNOMIALS

H. M. Srivastava, Fatma Taşdelen, and Burak Şekeroǧlu

Full-text: Open access

Abstract

The $q$-Konhauser polynomials, which were introduced and investigated in several recent works, are $q$-biorthogonal with respect to the weight function $x^{\alpha }\;e_{q}(-x)$ over the semi-infinite interval $(0,\infty )$. In the present paper, we derive various families of multilinear and multilateral generating functions for these $q$-Konhauser polynomials. We also briefly consider several special cases and consequences of the results presented in this paper.

Article information

Source
Taiwanese J. Math., Volume 12, Number 3 (2008), 841-850.

Dates
First available in Project Euclid: 21 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500602440

Digital Object Identifier
doi:10.11650/twjm/1500602440

Mathematical Reviews number (MathSciNet)
MR2417152

Zentralblatt MATH identifier
1162.33305

Subjects
Primary: 33C45: Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions] 33D45: Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
Secondary: 33D15: Basic hypergeometric functions in one variable, $_r\phi_s$

Keywords
basic (or $q$-)polynomials $q$-Laguerre polynomials $q$-biorthogonal polynomials $q$-Konhauser polynomials bilinear generating functions bilateral generating functions

Citation

Srivastava, H. M.; Taşdelen, Fatma; Şekeroǧlu, Burak. SOME FAMILIES OF GENERATING FUNCTIONS FOR THE q-KONHAUSER POLYNOMIALS. Taiwanese J. Math. 12 (2008), no. 3, 841--850. doi:10.11650/twjm/1500602440. https://projecteuclid.org/euclid.twjm/1500602440


Export citation

References

  • [1.] A. Altriptsize ln, E. Erkuş and F. Taşdelen, The $q$-Lagrange polynomials in several variables, Taiwanese J. Math., 10 (2006), 1131-1137.
  • [2.] W. A. Al-Salam and A. Verma, $q$-Konhauser polynomials, Pacific J. Math., 108 (1983), 1-7.
  • [3.] W. A. Al-Salam and A. Verma, A pair of biorthogonal sets of polynomials, Rocky Mountain J. Math., 13 (1983), 273-279.
  • [4.] V. K. Jain and H. M. Srivastava, New results involving a certain class of $q$-orthogonal polynomials, J. Math. Anal. Appl., 166 (1992), 331-344.
  • [5.] J. D. E. Konhauser, Some properties of biorthogonal polynomials, J. Math. Anal. Appl., 11 (1965), 242-260.
  • [6.] J. D. E. Konhauser, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., 24 (1967), 303-314.
  • [7.] D. S. Moak, The $q$-analogue of the Laguerre polynomials, J. Math. Anal. Appl., 81 (1981), 20-47.
  • [8.] S. Preiser, An investigation of biorthogonal polynomials derivable from ordinary differential equations of the third order, J. Math. Anal. Appl., 4 (1962), 38-64.
  • [9.] T. M. Rassias and H. M. Srivastava, Some general families of generating functions for the Laguerre polynomials, J. Math. Anal. Appl., 174 (1993), 528-538.
  • [10.] T. M. Rassias and H. M. Srivastava, A certain class of biorthogonal polynomials associated with the Laguerre polynomials, Appl. Math. Comput., 128 (2002), 379-385.
  • [11.] B. Şekeroğlu, H. M. Srivastava and F. Taşdelen, Some properties of $q$-biorthogonal polynomials, J. Math. Anal. Appl., 326 (2007), 896-907.
  • [12.] H., M., Srivastava, Some, biorthogonal, polynomials, suggested, by, the, Laguerre, polynomials, Pacific J. Math., 98 (1982), 235-250.
  • [13.] H. M. Srivastava, A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., 117 (1985), 183-191.
  • [14.] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
  • [15.] H., M., Srivastava, and, H., L., Manocha, A, Treatise, on, Generating, Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.