Taiwanese Journal of Mathematics

THE REAL PART OF AN OUTER FUNCTION AND A HELSON-SZEG¨O WEIGHT

Takahiko Nakazi and Takanori Yamamoto

Full-text: Open access

Abstract

Suppose $F$ is a nonzero function in the Hardy space $H^1$. We study the set $\{f; f \mbox{ is outer and } |F| \le \mbox{Re } f \, \mbox{ a. e. on } \partial D\}$, where $\partial D$ is the unit circle. When $F$ is a strongly outer function in $H^1$ and $\gamma$ is a positive constant, we describe the set $\{f; f \mbox{ is outer and } |F| \le \gamma \mbox{ Re } f \mbox{ and } |F^{-1}| \le \gamma \mbox{ Re } \, \, (f^{-1}) \, \, \mbox{ a. e. on } \partial D\}$. Suppose $W$ is a Helson-Szeg¨o weight. As an application, we parametrize real-valued functions $v$ in ${\mathcal L}^\infty(\partial D)$ such that the difference between $\log W$ and the harmonic conjugate function $\tilde{v}$ of $v$ belongs to ${\mathcal L}^\infty(\partial D)$ and $||v||_\infty$ is strictly less than $\pi/2$ using a contractive function $\alpha$ in $H^\infty$ such that $(1 + \alpha)=(1 - \alpha)$ is equal to the Herglotz integral of $W$.

Article information

Source
Taiwanese J. Math., Volume 5, Number 3 (2001), 575-585.

Dates
First available in Project Euclid: 20 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500574951

Digital Object Identifier
doi:10.11650/twjm/1500574951

Mathematical Reviews number (MathSciNet)
MR1849779

Zentralblatt MATH identifier
0985.30021

Subjects
Primary: 30D55
Secondary: 42B30: $H^p$-spaces 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15]

Keywords
Hardy space outer function Helson-Szeg¨o weight

Citation

Nakazi, Takahiko; Yamamoto, Takanori. THE REAL PART OF AN OUTER FUNCTION AND A HELSON-SZEG¨O WEIGHT. Taiwanese J. Math. 5 (2001), no. 3, 575--585. doi:10.11650/twjm/1500574951. https://projecteuclid.org/euclid.twjm/1500574951


Export citation