Taiwanese Journal of Mathematics

ON A CLASS OF $n$-STARLIKE FUNCTIONS

Mugur Acu

Full-text: Open access

Abstract

In this paper we define a general class of $n$-starlike functions with respect to a convex domain $D$ contained in the right half plane by using a generalized Sǎlǎgean operator introduced by F. M. Al-Oboudi in [2] and we give some properties of this class.

Article information

Source
Taiwanese J. Math., Volume 12, Number 2 (2008), 293-300.

Dates
First available in Project Euclid: 20 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500574154

Digital Object Identifier
doi:10.11650/twjm/1500574154

Mathematical Reviews number (MathSciNet)
MR2402115

Zentralblatt MATH identifier
1159.30303

Subjects
Primary: 30C45: Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.)

Keywords
starlike functions Libera-Pascu integral operator Briot-Bouquet differential subordination generalized Sǎlǎgean operator

Citation

Acu, Mugur. ON A CLASS OF $n$-STARLIKE FUNCTIONS. Taiwanese J. Math. 12 (2008), no. 2, 293--300. doi:10.11650/twjm/1500574154. https://projecteuclid.org/euclid.twjm/1500574154


Export citation

References

  • M. Acu, On a subclass of $n$-starlike functions associated with some hyperbola, General Mathematics, 13(1), (2005), 91-98.
  • F. M. Al-Oboudi, On univalent funtions defined by a generalized S${\check{\rm a}}$l${\check{\rm a}}$gean operator, Ind. J. Math. Math. Sci., 2004, no. 25-28, 1429-1436.
  • D. Blezu, On the close to convex functions with respect to a convex set II, Mathematica, Tome 3(1), (1989), 15-23.
  • P. Duren, Univalent functions, Springer Verlag, Berlin Heildelberg, 1984.
  • I. Magdaş, A new subclass of uniformly convex functions with negative coefficients, Doctoral Thesis, "Babeş-Bolyai" University, Cluj-Napoca, 1999.
  • S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Mich. Math., 28 (1981), 157-171.
  • S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equation, J. Differential Equations, 56 (1985), 297-308.
  • S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordination, Mich. Math., 32 (1985), 185-195.
  • Gr. S${\check{\rm a}}$l${\check{\rm a}}$gean, On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca, 1983.
  • J. Stankiewicz, A. Wisniowska, Starlike functions associated with some hyperbola, Folia Scientarum Universitatis Tehnicae Resoviensis 147, Matematyka, 19 (1996), 117-126.