Open Access
2012 HYPERSURFACES IN NON-FLAT LORENTZIAN SPACE FORMS SATISFYING Lkψ = Aψ + b
Pascual Lucas, H. Fabian Ramirez-Ospina
Taiwanese J. Math. 16(3): 1173-1203 (2012). DOI: 10.11650/twjm/1500406685

Abstract

We study hypersurfaces either in the De Sitter space $\mathbb{S}_1^{n+1} \subset \mathbb{R}_1^{n+2}$ or in the anti De Sitter space $\mathbb{H}_1^{n+1} \subset \mathbb{R}_2^{n+2}$ whose position vector $\psi$ satisfies the condition $L_k \psi = A \psi + b$, where $L_k$ is the linearized operator of the $(k+1)$-th mean curvature of the hypersurface, for a fixed $k = 0,\dots,n-1$, $A$ is an $(n+2) \times (n+2)$ constant matrix and $b$ is a constant vector in the corresponding pseudo-Euclidean space. For every $k$, we prove that when $A$ is self-adjoint and $b = 0$, the only hypersurfaces satisfying that condition are hypersurfaces with zero $(k+1)$-th mean curvature and constant $k$-th mean curvature, open pieces of standard pseudo-Riemannian products in $\mathbb{S}_1^{n+1}$ ($\mathbb{S}_1^m(r) \times \mathbb{S}^{n-m}(\sqrt{1-r^2})$, $\mathbb{H}^m(-r) \times \mathbb{S}^{n-m}$ $(\sqrt{1+r^2})$, $\mathbb{S}_1^m(\sqrt{1-r^2}) \times \mathbb{S}^{n-m}(r)$, $\mathbb{H}^m(-\sqrt{r^2-1}) \times \mathbb{S}^{n-m}(r)$), open pieces of standard pseudo-Riemannian products in $\mathbb{H}_1^{n+1}$ ($\mathbb{H}_1^m(-r) \times \mathbb{S}^{n-m}(\sqrt{r^2-1})$, $\mathbb{H}^m(-\sqrt{1+r^2}) \times \mathbb{S}_1^{n-m}(r)$, $\mathbb{S}_1^m(\sqrt{r^2-1}) \times \mathbb{H}^{n-m}(-r)$, $\mathbb{H}^m(-\sqrt{1-r^2}) \times \mathbb{H}^{n-m}(-r)$) and open pieces of a quadratic hypersurface $\{x \in \mathbb{M}_{c}^{n+1} \;|\; = d\}$, where $R$ is a self-adjoint constant matrix whose minimal polynomial is $t^2+at+b$, $a^2-4b \leq 0$, and $\mathbb{M}_{c}^{n+1}$ stands for $\mathbb{S}_1^{n+1} \subset \mathbb{R}_1^{n+2}$ or $\mathbb{H}_1^{n+1} \subset \mathbb{R}_2^{n+2}$. When the $k$-th mean curvature is constant and $b$ is a non-zero constant vector, we show that the hypersurface is totally umbilical, and then we also obtain a classification result (see Theorem 2).

Citation

Download Citation

Pascual Lucas. H. Fabian Ramirez-Ospina. "HYPERSURFACES IN NON-FLAT LORENTZIAN SPACE FORMS SATISFYING Lkψ = Aψ + b." Taiwanese J. Math. 16 (3) 1173 - 1203, 2012. https://doi.org/10.11650/twjm/1500406685

Information

Published: 2012
First available in Project Euclid: 18 July 2017

zbMATH: 1254.53100
MathSciNet: MR2917262
Digital Object Identifier: 10.11650/twjm/1500406685

Subjects:
Primary: 53B25 , 53B30 , 53C50

Keywords: $k$-maximal hypersurface , higher order mean curvatures , isoparametric hypersurface , linearized operator $L_k$ , Newton transformations , Takahashi theorem

Rights: Copyright © 2012 The Mathematical Society of the Republic of China

Vol.16 • No. 3 • 2012
Back to Top