Taiwanese Journal of Mathematics

The $L(2,1)$-$\cal F$-Labeling Problem of Graphs

Gerard J. Chang and Changhong Lu

Full-text: Open access

Abstract

In order to unify various concepts of distance-two labelings, we consider a general setting of distance-two labelings as follows. Given a graph $H$, an $L(2,1)$-$H$-labeling of a graph $G$ is a mapping $f$ from $V(G)$ to $V(H)$ such that $d_H(f(u),f(v)) \ge 2$ if $d_G(u,v) = 1$ and $d_H(f(u),f(v)) \ge 1$ if $d_G(u,v) = 2$. Suppose $\cal F$ is a family of graphs. The $L(2,1)$-${\cal F}$-labeling problem is to determine the $L(2,1)$-${\cal F}$-labeling number $\lambda_{\cal F}(G)$ of a graph $G$ which is the smallest number $|E(H)|$ such that $G$ has an $L(2,1)$-$H$-labeling for some $H \in {\cal F}$. Notice that the $L(2,1)$-${\cal F}$-labeling is the $L(2,1)$-labeling (respectively, the circular distance-two labeling) if ${\cal F}$ is the family of all paths (respectively, cycles). The purpose of this paper is to study the $L(2,1)$-${\cal F}$-labeling problem.

Article information

Source
Taiwanese J. Math., Volume 15, Number 3 (2011), 1277-1285.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406299

Digital Object Identifier
doi:10.11650/twjm/1500406299

Mathematical Reviews number (MathSciNet)
MR2829911

Zentralblatt MATH identifier
1235.05119

Subjects
Primary: 05C

Keywords
$L(2,1)$-labeling path cycle tree star spanning subgraph

Citation

Chang, Gerard J.; Lu, Changhong. The $L(2,1)$-$\cal F$-Labeling Problem of Graphs. Taiwanese J. Math. 15 (2011), no. 3, 1277--1285. doi:10.11650/twjm/1500406299. https://projecteuclid.org/euclid.twjm/1500406299


Export citation

References

  • G. J. Chang, J.-J. Chen, D. Kuo and S.-C. Liaw, The distance-two labeling of digraphs, Discrete Appl. Math., 155 (2007), 1007-1013.
  • G. J. Chang, W.-T. Ke, D. Kuo, D. D.-F. Liu and R. K. Yeh, On $L(d,1)$-labelings of graphs, Discrete Math., 220 (2000), 57-66.
  • G. J. Chang and D. Kuo, The $L(2,1)$-labeling on graphs, SIAM J. Discrete Math., 9 (1996), 309-316. \def\ipp\' i
  • G. J. Chang and S.-C. Liaw, The $L(2,1)$-labeling problem on ditrees, Ars Combin., 66 (2003), 23-31.
  • J. Fiala and J. Kratochv\ipp l, Partial covers of graphs, Discuss. Math. Graph Theory, 22 (2002), 89-99.
  • J. Fiala, J. Kratochv\ipp l and A. Pór, On the computational complexity of partial covers of Theta graphs, Discrete Appl. Math., 156 (2008), 1143-1149.
  • J. Georges and D. W. Mauro, On the criticality of graphs labeled with a condition at distance two, Congr. Numer., 101 (1994), 33-49.
  • J. Georges and D. W. Mauro, Generalized vertex labelings with a condition at distance two, Congr. Numer., 109 (1995), 141-159.
  • J. Georges and D. W. Mauro, On the size of graphs labeled with a condition at distance two, J. Graph Theory, 22 (1996), 47-57.
  • J. Georges and D. W. Mauro, Some results on $\lambda^j_k$-numbers of the products of complete graphs, Congr. Numer., 140 (1999), 141-160.
  • J. Georges, D. W. Mauro and M. Whittlesey, Relating path covering to vertex labelings with a condition at distance two, Discrete Math., 135 (1994), 103-111.
  • J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math., 5 (1992), 586-595.
  • W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE, 68 (1980), 1497-1514.
  • J. van den Heuvel, R. A. Leese, and M. A. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory, 29 (1998), 263-283.
  • P. K. Jha, A. Narayanan, P. Sood, K. Sundaram and V. Sunder, On $L(2,1)$-labeling of the Cartesian product of a cycle and a path, Ars Combin., 55 (2000), 81-89.
  • D. D.-F. Liu, Hamiltonicity and circular distance two labellings, Discrete Math., 232 (2001), 163-169.
  • D. D.-F. Liu and R. K. Yeh, On distance-two labelings of graphs, Ars Combin., 47 (1997), 13-22.
  • D. Sakai, Labeling chordal graphs with a condition at distance two, SIAM J. Discrete Math., 7 (1994), 133-140.
  • M. Whittlesey, J. Georges and D. W. Mauro, On the $\lambda$-number of $Q_n$ and related graphs, SIAM J. Discrete Math., 8 (1995), 499-506.
  • K.-F. Wu and R. K. Yeh, Labeling graphs with the circular difference, Taiwanese J. Math., 4 (2000), 397-405.
  • R. K. Yeh, The edge span of distance two labelings of graphs, Taiwanese J. Math., 4 (2000), 675-683.