Taiwanese Journal of Mathematics

$X$-POSETS OF CERTAIN COXETER GROUPS

Sarah Hart and Peter J. Rowley

Full-text: Open access

Abstract

Let $X$ be a subgroup of a Coxeter group $W$. In [5], the authors developed the notion of $X$-posets, which are defined on certain equivalence classes of the (right) cosets of $X$ in $W$. These posets can be thought of as a generalization of the well-known Bruhat order of $W$. This article provides a catalogue of all the $X$-posets for various small Coxeter groups.

Article information

Source
Taiwanese J. Math., Volume 17, Number 6 (2013), 1901-1919.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706277

Digital Object Identifier
doi:10.11650/tjm.17.2013.3263

Mathematical Reviews number (MathSciNet)
MR3141866

Zentralblatt MATH identifier
1284.20041

Subjects
Primary: 20F55: Reflection and Coxeter groups [See also 22E40, 51F15]

Keywords
coxeter group cosets Bruhat order partially ordered set

Citation

Hart, Sarah; Rowley, Peter J. $X$-POSETS OF CERTAIN COXETER GROUPS. Taiwanese J. Math. 17 (2013), no. 6, 1901--1919. doi:10.11650/tjm.17.2013.3263. https://projecteuclid.org/euclid.twjm/1499706277


Export citation

References

  • A. Björner and M. Wachs, Generalized quotients in Coxeter Groups, Trans. Amer. Math. Soc., 308 (1988), 1-37.
  • J. J. Cannon and C. Playoust, An Introduction to Algebraic Programming with Magma, [draft], Springer-Verlag, 1997.
  • V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math., 39 (1977), 187-198.
  • S. B. Hart and P. J. Rowley, Lengths of Subsets in Coxeter Groups, Turk. J. Math., 31 (2007), 63-77.
  • S. B. Hart and P. J. Rowley, On Cosets in Coxeter Groups, Turk. J. Math., 36 (2012), 77-93.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990).
  • S. B. Perkins and P. J. Rowley, Coxeter Length, J. Algebra, 273 (2004), 344-358.