Taiwanese Journal of Mathematics

$L(3,2,1)$-LABELING FOR THE PRODUCT OF A COMPLETE GRAPH AND A CYCLE

Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song

Full-text: Open access

Abstract

Given a graph $G=(V,E)$, a function $f$ on $V$ is an $L(3,2,1)$-labeling if for each pair of vertices $u,v$ of $G$, it holds that $|f(u)-f(v)|\ge 4-{\text {dist}}(u,v)$. $L(3,2,1)$-labeling number for $G$, denoted by $\lambda_{3,2,1}(G)$, is the minimum span of all $L(3,2,1)$-labeling $f$ for $G$. In this paper, when $G=K_m\Box C_n$ is the Cartesian product of the complete graph $K_m$ and the cycle $C_n$, we show that the lower bound of $\lambda_{3,2,1}(G)$ is $5m-1$ for $m\ge 3$, and the equality holds if and only if $n$ is a multiple of 5. Moreover, we show that $\lambda_{3,2,1}(K_3\Box C_n)=15$ when $n\ge 28$ and $n\not \equiv 0 \pmod 5$.

Article information

Source
Taiwanese J. Math., Volume 19, Number 3 (2015), 849-859.

Dates
First available in Project Euclid: 4 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499133665

Digital Object Identifier
doi:10.11650/tjm.19.2015.4632

Mathematical Reviews number (MathSciNet)
MR3353256

Zentralblatt MATH identifier
1357.05134

Subjects
Primary: 05C15: Coloring of graphs and hypergraphs 05C78: Graph labelling (graceful graphs, bandwidth, etc.) 05C38: Paths and cycles [See also 90B10]

Keywords
distance three labeling $L(3,2,1)$-labeling Cartesian products graph labeling

Citation

Kim, Byeong Moon; Hwang, Woonjae; Song, Byung Chul. $L(3,2,1)$-LABELING FOR THE PRODUCT OF A COMPLETE GRAPH AND A CYCLE. Taiwanese J. Math. 19 (2015), no. 3, 849--859. doi:10.11650/tjm.19.2015.4632. https://projecteuclid.org/euclid.twjm/1499133665


Export citation

References

  • A. A. Bertossi and M. C. Pinotti, Channel assignment with separation for interference avoidence in weierless networks, IEEE Trans. Parall. Distrib. Syst., 14 (2003), 222-235.
  • A. A. Bertossi and M. C. Pinotti, Approximate $L(\delta_1, \delta_2, \cdots, \delta_t)$-coloring of trees and interval graphs, Networks, 49(3) (2007), 204-216.
  • A. A. Bertossi, M. C. Pinotti and R. Tan, Efficient use of Radio spectrum in weierless networks with channel separation between close stations, dial M for mobility: International ACM workshop, Discrete algorithms and methods for mobile computing, 2000.
  • T. Calamoneri, The $L(h,k)$-labeling problem: a survey and annotated bibliography, Comp. J., 49 (2006), 585-608.
  • T. Calamoneri, The $L(h,k)$-labelling problem: an updated survey and annotated bibliography, Comp. J., 54 (2011), 1344-1371.
  • T. Calamoneri, Optimal $L(\delta_1,\delta_2,1)$-labelling of eight-regular grids, Inform. Process. Lett., 113 (2013), 361-364.
  • G. J. Chang and D. Kuo, The $L(2,1)$-labeling problem on graphs, SIAM J Discrete Math., 9 (1996), 309-316.
  • M. L. Chia, D. Kuo, H. Liao, C. H. Yang and R. K. Yeh, $L(3, 2, 1)$ labeling of graphs, Taiwan. J. Math., 15 (2011), 2439-2457.
  • J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math., 5 (1992), 586-595.
  • W. K. Hale, Frequency assignment: theory and application, Proc. IEEE, 68 (1980), 1497-1514.
  • L. Jia-zhuang and S. Zhen-dong, The $L(3,2,1)$-labeling problem on graphs, Math. Appl., 17 (2004), 596-602.
  • B. M. Kim, B. C. Song and W. Hwang, Distance three labelings for direct products of three complete graphs, Taiwan. J. Math., 17 (2013), 207-219.
  • B. M. Kim, B. C. Song and Y. Rho, The $\lambda$-number of the Cartesian product of a complete graph and a cycle, Korean. J. Math., 21 (2013), 151-159.
  • D. D. Liu, Radio number for trees, Discrete Math., 308(7) (2008), 1153-1164.
  • D. D. Liu and M. Xie, Radio number for square paths, Ars. Combinatoria, 90 (2009), 307-319.
  • D. D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Disc. Math, 19 (2005), 610-621.
  • Z. Shao and A. Vesel, Integer linear programming model and satisfiability test reduction for distance constrained labellings of graphs: the case of $L(3,2,1)$ labelling for products of paths and cycles, IET Commun., 7 (2013), 715-720.
  • R. K. Yeh, A survey on labeling graphs with a condition two, Disc. Math., 306 (2006), 1217-123.
  • S. Zhou, A distance-labelling problem for hypercubes, Discrete Appl. Math., 156(15) (2008), 2846-2854.