Topological Methods in Nonlinear Analysis

Multiple interior layers of solutions to perturbed elliptic Sine-Gordon equation on an interval

Tetsutaro Shibata

Full-text: Open access

Abstract

We consider the perturbed elliptic Sine-Gordon ODE with two positive parameters $\mu$ and $\lambda$, and show the existence of solutions which have $2n$ multiple interior layers for $\lambda \gg 1$. We also determine the location of multiple interior layers as $\lambda \to \infty$.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 15, Number 2 (2000), 329-357.

Dates
First available in Project Euclid: 22 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1471873945

Mathematical Reviews number (MathSciNet)
MR1784145

Zentralblatt MATH identifier
0978.34017

Citation

Shibata, Tetsutaro. Multiple interior layers of solutions to perturbed elliptic Sine-Gordon equation on an interval. Topol. Methods Nonlinear Anal. 15 (2000), no. 2, 329--357. https://projecteuclid.org/euclid.tmna/1471873945


Export citation

References

  • A. I. Bobenko and S. B. Kuksin, The nonlinear Klein–Gordon equation on an interval as a perturbed Sine–Gordon equation , Comment. Math. Helv., 70 (1995), 63–112 \ref\no2
  • B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle , Comm. Math. Phys., 68 (1979), 209–243 \ref\no3
  • R. E. O'Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations, Springer (1991) \ref\no4
  • T. Shibata, Asymptotic behavior of eigenvalues of two-parameter nonlinear Sturm–Liouville problems , J. Anal. Math., 66 (1995), 277–294 \ref\no5 ––––, Interior transition layers of solutions to perturbed Sine–Gordon equation on an interval , to appear \ref\no6 ––––, Spectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems , Bull. Belg. Math. Soc. Simon Stevin, 3 (1996), 501–515