Topological Methods in Nonlinear Analysis

Second Noether-type theorem for the generalized variational principle of Herglotz

Bogdana Georgieva and Ronald B. Guenther

Full-text: Open access

Abstract

The generalized variational principle of Herglotz defines the functional, whose extrema are sought, by a differential equation rather than by an integral. For such functionals the classical Noether theorems are not applicable. First and second Noether-type theorems which do apply to the generalized variational principle of Herglotz were formulated and proved. These theorems contain the classical first and second Noether theorems as special cases. We published the first Noether-type theorem previously in this journal. Here we prove the second Noether-type theorem and show that it reduces to the classical second Noether theorem when the Herglotz variational principle reduces to the classical variational principle.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 26, Number 2 (2005), 307-314.

Dates
First available in Project Euclid: 23 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1466705574

Mathematical Reviews number (MathSciNet)
MR2197762

Zentralblatt MATH identifier
1191.70007

Citation

Georgieva, Bogdana; Guenther, Ronald B. Second Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 26 (2005), no. 2, 307--314. https://projecteuclid.org/euclid.tmna/1466705574


Export citation

References

  • G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer–Verlag, New York(1989) \ref \key 2
  • C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, ed. 2, Chelsea Publishing, New York (1989) \ref \key 3
  • L. P. Eisenhart, Continuous Groups of Transformations, Princeton Univ. Press (1933) \ref \key 4
  • B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz , Topol. Methods Nonlinear Anal., 20 (2002), 261–273 \ref \key 5
  • B. Georgieva, R. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem , J. Math. Phys., 44 (2003), 3911–3927 \ref \key 6
  • H. Goldstein, Classical Mechanics, ed. 2, Addison-Wesley Publishing (1981) \ref \key 7
  • R. B. Guenther, J. A. Gottsch and C. M. Guenther, The Herglotz Lectures on Contact Transformations and Hamiltonian Systems, Toru\plr ä (Poland), Juliusz Center for Nonlinear Studies (1996) \ref \key 8
  • G. Herglotz, Gesammelte Schriften, Göttingen, Vandenhoeck & Ruprecht (1979 (H. Schwerdtfeger, ed.)) \ref \key 9 ––––, Berührungstransformationen , Lectures at the University of Göttingen, Göttingen (1930) \ref \key 10
  • S. Lie, Die Theorie der Integralinvarianten ist ein Korollar der Theorie der Differentialinvarianten , Leipz. Berich., 3 (1897), 342–357 ;, Gesammelte Abhandlungen, 6 , Tuebner, Leipzig (1927), 649–663 \ref \key 11
  • J. D. Logan, Invariant Variational Principles, Academic Press, New York (1977) \ref \key 12
  • E. Noether, Invariante Variationsprobleme , Nachr. König. Gesell. Wissen. Göttingen, Matt.-Phys. Kl. (1918), 235–257 \moreref \transl\nofrills English transl. in, Transport Theory Statist. Phys., 1 (1971), 186–207 \ref \key 13 ––––, Invarianten beliebiger Differentialausdrücke , Nachr. König. Gesell. Wissen. Göttingen, Matt.-Phys. Kl. (1918), 37–44 \ref \key 14
  • P. J. Olver, Applications of Lie Groups to Differential Equations, ed. 2, Springer–Verlag, New York (1993)