Topological Methods in Nonlinear Analysis

Ergodic cocycles for Gaussian actions

Dariusz Skrenty

Full-text: Open access

Abstract

Ergodic Gaussian cocycles for rigid Gaussian actions are constructed. It is also shown when any isomorphism between Gaussian actions is Gaussian.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 30, Number 2 (2007), 321-333.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150095

Mathematical Reviews number (MathSciNet)
MR2387830

Zentralblatt MATH identifier
1147.37004

Citation

Skrenty, Dariusz. Ergodic cocycles for Gaussian actions. Topol. Methods Nonlinear Anal. 30 (2007), no. 2, 321--333. https://projecteuclid.org/euclid.tmna/1463150095


Export citation

References

  • I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer–Verlag, New York (1982) \ref\key 2
  • M. Lemańczyk, Entropy of Gaussian actions for countable Abelian groups , Fund. Math., 157 (1998), 277–286 \ref\key 3
  • M. Lemańczyk, E. Lesigne and D. Skrenty, Multiplicative Gaussian cocycles , Aequationes Math., 61 (2001), 162–178 \ref\key 4
  • M. Lemańczyk and F. Parreau, On the disjointness problem for Gaussian automorphisms , Proc. Amer. Math. Soc., 127 (1998), 2073–2081 \ref\key 5
  • M. Lemańczyk, F. Parreau and J.-P. Thouvenot, Gaussian automorphisms whose ergodic self-joinings are Gaussian , Fund. Math., 164 (2000), 253–293 \ref\key 6
  • M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogenous Banach spaces , Trans. Amer. Math. Soc., 348 (1996), 4919–4938 \ref\key 7
  • M. Lemańczyk and J. Sam Lazaro, Spectral analysis of certain compact factors for Gaussian dynamical systems , Israel J. Math., 98 (1997), 307–328 \ref\key 8
  • D. Newton and W. Parry, On a factor automorphism of a normal dynamical system , Ann. Math. Statist., 37 (1966), 1528–1533 \ref\key 9
  • W. Parry, Instances of cohomological triviality and rigidity , Ergodic Theory Dynam. System, 15 (1995), 685–696 \ref\key 10 ––––, Topics in Ergodic Theory, Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge (1981) \ref\key 11
  • M. Queffélec, Substitution Dynamical Systems–-Spectral Analysis , Lecture Notes in Math. 1294, Springer–Verlag, Berlin (1987) \ref\key 12
  • T. de la Rue, Entropie d'un système dynamique gaussien: cas d'une action de ${\Bbb Z}^d$ , C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 191–194 \ref\key 13
  • K. Schmidt, Cocycles of Ergodic Transformation Groups, MacMillan Lectures in Mathematics vol. 1, MacMillan Company of India, Delhi (1977) \ref\key 14
  • A. M. Vershik, Spectral and metric isomorphism of some normal dynamical systems , Soviet Math. Dokl., 144 (1962), 693–696