Topological Methods in Nonlinear Analysis

Autonomous dissipative semidynamical systems with impulses

Everaldo M. Bonotto and Daniela P. Demuner

Full-text: Open access

Abstract

In the present paper, we study the theory of dissipative impulsive semidynamical systems. We define different types of dissipativity as point, compact, local and bounded. The center of Levinson is defined for compact dissipative impulsive semidynamical systems and its topological properties are investigated. Also, we present results giving necessary and sufficient conditions to obtain dissipativity, and we include some examples to point out that the concepts of the different kinds of dissipativity are not equivalent in general.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 41, Number 1 (2013), 1-38.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461253854

Mathematical Reviews number (MathSciNet)
MR3086532

Zentralblatt MATH identifier
1321.37012

Citation

Bonotto, Everaldo M.; Demuner, Daniela P. Autonomous dissipative semidynamical systems with impulses. Topol. Methods Nonlinear Anal. 41 (2013), no. 1, 1--38. https://projecteuclid.org/euclid.tmna/1461253854


Export citation

References

  • N.P. Bhatia and G.P. Szegö, Stability Theory of Dynamical Systems, Grundlehren Math. Wiss., Band 161, Springer–Verlag, New York (1970);, reprint of the 1970 original in Classics Math., Springer–Verlag, Berlin (2002) \ref\key 2
  • E.M. Bonotto, Flows of characteristic $0^{+}\!$ in impulsive semidynamical systems , J. Math. Anal. Appl., 332 , no. 1 (2007), 81–96 \ref\key 3 ––––, LaSalle's Theorems in impulsive semidynamical systems , Nonlinear Anal., 71 , no. 5–6 (2009), 2291–2297 \ref\key 4
  • E. M. Bonotto and M. Federson, Topological conjugation and asymptotic stability in impulsive semidynamical systems , J. Math. Anal. Appl., 326 yr 2007 , 869–881 \ref\key 5 ––––, Limit sets and the Poincaré–Bendixson Theorem in semidynamical impulsive systems , J. Differential Equations, 244 (2008), 2334–2349 \ref\key 6 ––––, Poisson stability for impulsive semidynamical systems , Nonlinear Anal., 71 (2009), 6148–6156 \ref\key 7
  • E.M. Bonotto and N.G. Grulha Jr., Lyapunov stability of closed sets in impulsive semidynamical systems , Electron. J. Differential Equations, 78 (2010), 1–18 \ref\key 8
  • D.N. Cheban, Global attractors of non-autonomous dissipative dynamical systems , Interdiscip. Math. Sci., 1 , World Scientific, Publishing, Hackensack, NJ (2004) \ref\key 9
  • K. Ciesielski, On semicontinuity in impulsive dynamical systems , Bull. Polish Acad. Sci. Math., 52 (2004), 71–80 \ref\key 10 ––––, On stability in impulsive dynamical systems , Bull. Polish Acad. Sci. Math., 52 (2004), 81–91 \ref\key 11 ––––, On time reparametrizations and isomorphisms of impulsive dynamical systems , Ann. Polon. Math, 84 (2004), 1–25 \ref\key 12
  • W.M. Haddad, V. Chellaboina and S.G. Nersesov, Impulsive and hybrid dynamical systems: stability, dissipativity and control , Princeton University Press (2006) \ref\key 13
  • W.M. Haddad and S.G. Nersesov, Finite-time stabilization of nonlinear impulsive dynamical systems , Nonlinear Anal. Hybrid Systems, 2 (2008), 832–845 \ref\key 14
  • Haibo Jiang and Qinsheng Bi, Impulsive synchronization of networked nonlinear dynamical systems , Phys. Lett. A, 374 (2010), 2723–2729 \ref\key 15
  • S.K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl., 150 , no. 1 (1990), 120–128 \ref\key 16 ––––, Stability and asymptotic stability in impulsive semidynamical systems , J. Appl. Math. Stoch. Anal., 7 (1994), 509–523 \ref\key 17
  • B. Morris and J. W Grizzle, Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots , IEEE Trans. Automat. Control, 54 (2009), 1751–1764 \ref\key 18
  • J.M.A. Toledano, T.D. Benavides and G.L. Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser Verlag (1997) \ref\key 19
  • H. Ye, A.N. Michel and L. Hou, Stability analysis of systems with impulse effects , IEEE Trans. Automatic Control, 43 (1998), 1719–1723