Tokyo Journal of Mathematics

On a Class of Epstein Zeta Functions


Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


X.-J.~Li gave in~[4] a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients. In this paper, we investigate exactly how the Li criterion for the Riemann hypothesis fails for a class of Epstein zeta functions. This enables to derive some interesting consequences regarding $c_K=\frac{h_K\log d_K}{\sqrt{d_K}}$ of a quadratic imaginary field $K$ of absolute discriminant $d_K$ and class number $h_K$. Similar results are stated for the period ratios of elliptic curves with complex multiplication.

Article information

Tokyo J. Math., Volume 40, Number 2 (2017), 339-351.

First available in Project Euclid: 9 January 2018

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11M06: $\zeta (s)$ and $L(s, \chi)$
Secondary: 11M26: Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses 11M36: Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. Explicit formulas


OMAR, Sami. On a Class of Epstein Zeta Functions. Tokyo J. Math. 40 (2017), no. 2, 339--351.

Export citation


  • \BibAuthorsE. Bombieri and J.C. Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory 77 (2) (1999), 274–287.
  • \BibAuthorsD. Goldfeld, Gauss' class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. 13 (1) (1985), 23–37.
  • \BibAuthorsK. Katayama, A generalization of gamma functions and Kronecker's limit formulas, J. Number Theory 130 (7) (2010), 1642–1674.
  • \BibAuthorsX.-J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (2) (1997), 325–333.
  • \BibAuthorsX.-J. Li, Explicit formulas for Dirichlet and Hecke $L$-functions, Illinois J. Math. 48 (2) (2004), 491–503.
  • \BibAuthorsS. Omar and K. Mazhouda, Le critère de Li et l'hypothèse de Riemann pour la classe de Selberg, J. Number Theory 125 (1) (2007), 50–58.
  • \BibAuthorsS. Omar and K. Mazhouda, Corrigendum et addendum à “Le critère de Li et l'hypothèse de Riemann pour la classe de Selberg” [J. Number Theory 125 (1) (2007), 50–58], J. Number Theory 130 (4) (2010), 1109–1114.
  • \BibAuthorsS. Omar, R. Ouni and K. Mazhouda, On the Li Coefficients for the Hecke $L$-functions, Math. Phys. Anal. Geom. 17 (1–2) (2014), 67–81.
  • \BibAuthorsC. L. Siegel, Lectures on advanced analytic number theory, Tata Institute, Bombay, 1965.
  • \BibAuthorsA. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer-Verlag, Berlin, 1985.
  • \BibAuthorsS. Yamamoto, On Kronecker limit formula for real quadratic fields, J. Number Theory 128 (2) (2008), 426–450.
  • \BibAuthorsD. B. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153–184.