Tokyo Journal of Mathematics

Integration on Valuation Fields over Local Fields

Matthew MORROW

Full-text: Open access


We present elements of a theory of translation-invariant integration, measure, and harmonic analysis on a valuation field with local field as residue field, extending work of I. Fesenko. Applications to zeta integrals for two-dimensional local fields are then considered.

Article information

Tokyo J. Math., Volume 33, Number 1 (2010), 235-281.

First available in Project Euclid: 21 July 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


MORROW, Matthew. Integration on Valuation Fields over Local Fields. Tokyo J. Math. 33 (2010), no. 1, 235--281. doi:10.3836/tjm/1279719589.

Export citation


  • A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Amer. J. Math., 124 (2002), no. 5, 879–920.
  • A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields II, Doc. Math. extra vol. Kazuya Kato's fiftieth birthday (2003), 5–72, (electronic).
  • T. M. Apostol, Mathematical analysis, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., second ed., 1974.
  • J. M. Borger, Conductors and the moduli of residual perfection, Math. Ann., 329 (2004), no. 1, 1–30.
  • J. M. Borger, A monogenic Hasse-Arf theorem, J. Théor. Nombres Bordeaux, 16 (2004), no. 2, 373–375.
  • D. Bump, Automorphic forms and representations, vol. 55 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997.
  • R. Cluckers, Igusa and Denef-Sperber conjectures on nondegenerate $p$- adic exponential sums, Duke Math. J., 141 (2008), no. 1, 205–216.
  • R. Cluckers, Igusa's conjecture on exponential sums modulo $p$ and $p \sp 2$ and the motivic oscillation index, Int. Math. Res. Not. IMRN (2008), no. 4, Art.ID rnm118, 20, pp.
  • J. Denef, The rationality of the Poincaré series associated to the $p$-adic points on a variety, Invent. Math., 77 (1984), no. 1, 1–23.
  • I. Fesenko, A multidimensional local theory of class fields II (Russian), Algebra i Analiz, 3 (1991), no. 5, 168–189; translation in St. Petersburg Math. J. 3 (1992), no. 5, 1103–1126.
  • I. Fesenko, Topological Milnor $K$-groups of higher local fields, in [Fesenk o1999?], 61–74.
  • I. Fesenko, Analysis on arithmetic schemes I, Doc. Math. Kazuya Kato's fiftieth birthday (2003), 261–284 (electronic), available at,
  • I. Fesenko, Measure, integration and elements of harmonic analysis on generalized loop spaces, in Proceedings of the St. Petersburg Mathematical Society Vol. XII, vol. 219 of Amer. Math. Soc. Transl. Ser. 2 (2006), Providence, RI, Amer. Math. Soc., 149–165, available at,
  • I. Fesenko and M. Kurihara, Eds., Invitation to higher local fields, vol. 3 of Geometry & Topology Monographs, Geometry & Topology Publications, Coventry, 2000. Papers from the conference held in Münster, August 29–September 5, 1999.
  • I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, vol. 121 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, second ed., 2002. With a foreword by I. R. Shafarevich.
  • I. B. Fesenko, Adelic approach to the zeta function of arithmetic schemes in dimension two, Mosc. Math. J., 8 (2008), no. 2, 273–317, 399–400.
  • I. B. Fesenko, Analysis on arithmetic schemes II, 2008, expanded version of [Fesenko2008?], available at,
  • I. Gelfand, D. Raikov and G. Shilov, Commutative normed rings, Chelsea Publishing Company, Bronx, New York, 1964.
  • R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, vol. 260 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1972.
  • P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950.
  • E. Hrushovski and D. Kazhdan, Integration in valued fields, in, Algebraic geometry and number theory, vol. 253 of Progr. Math., Birkh äuser Boston, Boston, MA, 2006, 261–405.
  • E. Hrushovski and D. Kazhdan, The value ring of geometric motivic integration, and the Iwahori Hecke algebra of $\rm SL\sb 2$, with an appendix by Nir Avni, Geom. Funct. Anal., 17 (2008), no. 6, 1924–1967.
  • K. Iwasawa, 'Letter to J. Dieudonné', in, Zeta functions in geometry (Tokyo, 1990), vol. 21 of Adv. Stud. Pure Math., Kinokuniya, Tokyo, 1992, 445–450.
  • G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus, Oxford University Press, 2000.
  • K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, in, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), vol. 83 of Contemp. Math., 101–131, Amer. Math. Soc., Providence, RI, 1989.
  • K. Kato, Class field theory, $D$-modules, and ramification on higher-dimensional schemes I, Amer. J. Math., 116 (1994), no. 4, 757–784.
  • H. H. Kim and K.-H. Lee, Spherical Hecke algebras of $\rm SL\sb 2$ over $2$-dimensional local fields, Amer. J. Math., 126 (2004), 1381– 1399.
  • H. H. Kim and K.-H. Lee, An invariant measure on $\rm GL\sb n$ over $2 $-dimensional local fields, University of Nottingham Mathematics preprint series, (2005).
  • C. J. Moreno, Advanced Analytic Number Theory: L-Functions, vol. 115 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2005.
  • M. Morrow, Integration on product spaces and $\mbox{GL}_n$ of a valuation fields over a local field, Communications in Number Theory and Physics, vol. 2 (2008), 3, 563–592.
  • M. Morrow, Fubini's theorem and non-linear changes of variables over a two-dimensional local field, arXiv:math.NT /0712.2177, 2008.
  • M. Morrow, Investigations in two-dimensional arithmetic geometry, Ph.D. thesis, School of Mathematical Sciences, University of Nottingham, 2009, available at pmzmtm/.
  • A. N. Parshin, Higher dimensional local fields and $L$-functions, in [Fesenk o1999?], 199–213, 2000.
  • W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York, third ed., 1987.
  • J. T. Tate, Fourier analysis in number fields, and Hecke's zeta- functions, in, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, 305–347.
  • A. Weil, Fonction zêta et distributions, in Séminaire Bourbaki, Vol. 9 (1995), exp. no. 312, Soc. Math. France, Paris, 523–531.
  • I. B. Zhukov, An approach to higher ramification theory, in [Fesenk o1999?], 143–150, (electronic).
  • I. B. Zhukov, On ramification theory in the case of an imperfect residue field, Mat. Sb., 194 (2003), 3–30.