Tbilisi Mathematical Journal

A sinc-Gauss-Jacobi collocation method for solving Volterra's population growth model with fractional order

Abbas Saadatmandi, Ali Khani, and Mohammad-Reza Azizi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


A new sinc-Gauss-Jacobi collocation method for solving the fractional Volterra's population growth model in a closed system is proposed. This model is a nonlinear fractional Volterra integro-differential equation where the integral term represents the effects of toxin. The fractional derivative is considered in the Liouville-Caputo sense. In the proposed method, we first convert fractional Volterra's population model to an equivalent nonlinear fractional differential equation, and then the resulting problem is solved using collocation method. The proposed collocation technique is based on sinc functions and Gauss-Jacobi quadrature rule. In this approach, the problem is reduced to a set of algebraic equations. The obtained numerical results of the present method are compared with some well-known results in the literature to show the applicability and efficiency of the proposed method.

Article information

Tbilisi Math. J., Volume 11, Issue 2 (2018), 123-137.

Received: 6 August 2017
Accepted: 25 March 2018
First available in Project Euclid: 20 June 2018

Permanent link to this document

Primary: 65M70: Spectral, collocation and related methods
Secondary: 26A33: Fractional derivatives and integrals 92D40: Ecology

collocation method fractional derivatives and integrals sinc functions Volterra’s population Liouville-Caputo derivative


Saadatmandi, Abbas; Khani, Ali; Azizi, Mohammad-Reza. A sinc-Gauss-Jacobi collocation method for solving Volterra's population growth model with fractional order. Tbilisi Math. J. 11 (2018), no. 2, 123--137. https://projecteuclid.org/euclid.tbilisi/1529460027

Export citation


  • M. Abbaszade, A. Mohebbi, Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry, Iranian J. Math. Chem., 3 (2012), 195-220.
  • S. Alkan, K. Yildirim, A. Secer, An eflcient algorithm for solving fractional differential equations with boundary conditions, Open Phys., 14 (2016), 6-14.
  • K. Al-Khaled, Numerical approximations for population growth models, Appl. Math. Comput., 160 (2005), 865-873.
  • O. A. Arqub, A. El-Ajou, S. Moman, Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, J. Comput. Phys., 293 (2015), 385-399.
  • M. R. Azizi, A. Khani, Sinc operational matrix method for solving the Bagley-Torvik equation, Comput. Methods Differential Equations, 5 (2017), 56-66.
  • M. Dehghan, M. Abbaszade, Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis, Appl. Numer. Math., 119 (2017), 51-66.
  • E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62 (2011), 2364-2373.
  • A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, A. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119-133.
  • M. Ghasemi, M. Fardi, R. K. Ghazizni, A new application of the homotopy analysis method in solving the fractional Volterra's population system, Appl. Math. 59 (2014), 319-330.
  • N. Hale, A. Townsend, Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35 (2013), A652-A674.
  • E. Hesameddini, E. Asadollahifard, A new reliable algorithm based on the sinc function for the time fractional diffusion equation, Numer. Algorithms, 72 (2016), 893-913.
  • N. A. Khan, A. Ara, M. Jamil, Approximations of the nonlinear Volterra's population model by an efficient numerical method, Math. Meth. Appl. Sci., 34 (2011), 1733-1738.
  • H. Khosravian-Arab, M. Dehghan, M. R Eslahchi, Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications, J. Comput. Phys., 338 (2017), 527-566.
  • A. A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • J. Lund, K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992.
  • J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140-1153.
  • M. Maleki, M. Tavassoli Kajani, Numerical approximations for Volterra's population growth model with fractional order via a multi-domain pseudospectral method, Appl. Math. Modelling, 39 (2015), 4300-4308.
  • H. R. Marzban, S. M. Hoseini, M. Razzaghi, Solution of Volterra's population model via block-pulse functions and Lagrange-interpolating polynomials, Math. Meth. Appl. Sci., 32 (2009), 127-134.
  • S. Mashayekhi, M. Razzaghi, Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation, Math. Meth. Appl. Sci., 39 (2016), 353-365.
  • S. Momani, R. Qaralleh, Numerical approximations and Pade approximants for a fractional population growth model, Appl. Math. Model., 31 (2007), 1907-1914.
  • M. Nabati, M. Jalalvand, Solution of Troesch's problem through double exponential sinc- Galerkin method, Comput. Methods Differential Equations, 5 (2017), 141-157.
  • Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21 (2008), 194-199.
  • K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • K. Parand, S. Abbasbandy, S. Kazem, J. A. Rad, A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4250-4258.
  • K. Parand, M. Delkhosh, Solving Volterra's population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions, Ricerche di Matematica, 65 (2016), 4300-4308.
  • K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, M. Kazemnasab Haji, Collocation method using sinc and Rational Legendre functions for solving Volterra's population model, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1811-1819.
  • K. Parand, M. Nikarya, Application of Bessel functions for solving differential and integro-differential equations of the fractional order, Appl. Math. Model. 38 (2014), 4137-4147.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • A. Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications, Appl. Math. Modelling, 38 (2014), 1365-1372.
  • A. Saadatmandi, A. Asadi, A. Eftekhari, Collocation method using quintic B-spline and sinc functions for solving a model of squeezing flow between two infinite plates, Int. J. Comput. Math., 93 (2016), 1921-1936.
  • A. Saadatmandi, M. Dehghan, A Legendre collocation method for fractional integro-differential equations, J. Vib. Control, 17 (2011), 2050-2058.
  • A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326-1336.
  • A. Saadatmandi, M. Dehghan, M. R. Azizi, The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 4125-4136.
  • A. Saadatmandi, M. Razzaghi, The numerical solution of third-order boundary value problems using sinc-collocation method, Commun. Numer. Meth. Engng, 23 (2007), 681-689.
  • J. Shen, T. Tang, L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, New York, 2011.
  • F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York, 1993.
  • N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, Solving time-fractional order telegraph equation via sinc-Legendre collocation method, Mediterr. J. Math., 13 (2016), 5119-5133.
  • K. G. TeBeest, Numerical and analytical solutions of Volterra's population model, SIAM Rev., 39 (1997), 484-493.
  • H. Xu, Analytical approximations for a population growth model with fractional order, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1978-1983.
  • S. Yeganeh, Y. Ordokhani, A. Saadatmandi, A sinc-collocation method for second-order boundary value problems of nonlinear integro-differential equation, J. Inform. Comput. Sci., 7 (2012), 151-160.
  • S. Yüzbaşi, A numerical approximation for Volterra's population growth model with fractional order, Appl. Math. Model., 37 (2013), 3216-3227.