Statistical Science

Quantum Annealing with Markov Chain Monte Carlo Simulations and D-Wave Quantum Computers

Yazhen Wang, Shang Wu, and Jian Zou

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Quantum computation performs calculations by using quantum devices instead of electronic devices following classical physics and used by classical computers. Although general purpose quantum computers of practical scale may be many years away, special purpose quantum computers are being built with capabilities exceeding classical computers. One prominent case is the so-called D-Wave quantum computer, which is a computing hardware device built to implement quantum annealing for solving combinatorial optimization problems. Whether D-Wave computing hardware devices display a quantum behavior or can be described by a classical model has attracted tremendous attention, and it remains controversial to determine whether quantum or classical effects play a crucial role in exhibiting the computational input–output behaviors of the D-Wave devices. This paper consists of two parts where the first part provides a review of quantum annealing and its implementations, and the second part proposes statistical methodologies to analyze data generated from annealing experiments. Specifically, we introduce quantum annealing to solve optimization problems and describe D-Wave computing devices to implement quantum annealing. We illustrate implementations of quantum annealing using Markov chain Monte Carlo (MCMC) simulations carried out by classical computers. Computing experiments have been conducted to generate data and compare quantum annealing with classical annealing. We propose statistical methodologies to analyze computing experimental data from a D-Wave device and simulated data from the MCMC based annealing methods, and establish asymptotic theory and check finite sample performances for the proposed statistical methodologies. Our findings confirm bimodal histogram patterns displayed in input–output data from the D-Wave device and both U-shape and unimodal histogram patterns exhibited in input–output data from the MCMC based annealing methods. Further statistical explorations reveal possible sources for the U-shape patterns. On the other hand, our statistical analysis produces statistical evidence to indicate that input–output data from the D-Wave device are not consistent with the stochastic behaviors of any MCMC based annealing models under the study. We present a list of statistical research topics for the future study on quantum annealing and MCMC simulations.

Article information

Source
Statist. Sci., Volume 31, Number 3 (2016), 362-398.

Dates
First available in Project Euclid: 27 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.ss/1475001234

Digital Object Identifier
doi:10.1214/16-STS560

Mathematical Reviews number (MathSciNet)
MR3552740

Zentralblatt MATH identifier
06946231

Keywords
Quantum annealing quantum computing Markov chain Monte Carlo Ising model ground state success probability Hamiltonian quantum bit (qubit)

Citation

Wang, Yazhen; Wu, Shang; Zou, Jian. Quantum Annealing with Markov Chain Monte Carlo Simulations and D-Wave Quantum Computers. Statist. Sci. 31 (2016), no. 3, 362--398. doi:10.1214/16-STS560. https://projecteuclid.org/euclid.ss/1475001234


Export citation

References

  • Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S. and Regev, O. (2007). Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37 166–194.
  • Albash, T., Rønnow, T. F., Troyer, M. and Lidar, D. A. (2014). Reexamining classical and quantum models for the D-Wave One processor: The role of excited states and ground state degeneracy. Available at arXiv:1409.3827v1.
  • Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. and Head-Gordon, M. (2005). Simulated quantum computation of molecular energies. Science 309 1704–1707.
  • Benjamini, Y. (2010). Discovering the false discovery rate. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 405–416.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.
  • Bertsimas, D. and Tsitsiklis, J. (1992). Simulated annealing. In Probability and Algorithms 17–29. Nat. Acad. Press, Washington, DC.
  • Bian, Z., Chudak, F., Macready, W. G., Clark, L. and Gaitan, F. (2012). Experimental determination of Ramsey numbers. Available at arXiv:1201.1842.
  • Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N. and Lidar, D. A. (2014a). Experimental signature of programmable quantum annealing. Nature Comm. 4. 2067.
  • Boixo, S., Rønnow, T. F., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M. and Troyer, M. (2014b). Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10 218–224.
  • Boixo, S., Smelyanskiy, V. N., Shabani, A., Isakov, S. V., Dykman, M., Denchev, V. S., Amin, M., Smirnov, A., Mohseni, M. and Neven, H. (2015a). Computational role of collective tunneling in a quantum annealer. Available at arXiv:1411.4036v2.
  • Boixo, S., Smelyanskiy, V. N., Shabani, A., Isakov, S. V., Dykman, M., Denchev, V. S., Amin, M., Smirnov, A., Mohseni, M. and Neven, H. (2015b). Computational role of multiqubit tunneling in a quantum annealer. Available at arXiv:1502.05754v1.
  • Born, M. and Fock, V. (1928). Beweis des Adiabatensatzes. Zeitschrift Für Physik A 51 165–180.
  • Britton, J. W., Sawyer, B. C., Keith, A., Wang, C.-C. J., Freericks, J. K., Uys, H., Biercuk, M. J. and Bollinger, J. J. (2012). Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins. Nature 484 489–492.
  • Brooke, J., Bitko, D., Rosenbaum, T. F. and Aeppli, G. (1999). Quantum annealing of a disordered magnet. Science 284 779–781.
  • Browne, D. (2014). Model versus machine. Nature Physics 10 179–180.
  • Brumfiel, G. (2012). Simulation: Quantum leaps. Nature 491 322–324.
  • Cai, T., Kim, D., Wang, Y., Yuan, M. and Zhou, H. H. (2016). Optimal large-scale quantum state tomography with Pauli measurements. Ann. Statist. 44 682–712.
  • Clarke, J. and Wilhelm, F. K. (2008). Superconducting quantum bits. Nature 453 1031–1042.
  • Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113 41–85.
  • Denchev, V. S., Boixo, S., Isakov, S. V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J. and Neven, H. (2016). What is the computational value of finite range tunneling? Available at arXiv:1512.02206v4.
  • Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400 97–117.
  • Devoret, M. H., Wallra, A. and Martinis, J. M. (2004). Superconducting qubits: A short review. Available at arXiv:cond-mat/0411174v1.
  • DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, L. S., Johnson, B. R., Schuster, D. I., Majer, J., Blais, A., Frunzio, L., Girvin, S. M. and Schoelkopf, R. J. (2009). Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460 240–244.
  • DiVincenzo, D. P. (1995). Quantum computation. Science 270 255–261.
  • Farhi, E., Goldstone, J., Gutmann, S. and Sipser, M. (2000). Quantum computation by adiabatic evolution. Available at arXiv:quant-ph/0001106v1.
  • Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A. and Preda, D. (2001). A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292 472–476.
  • Farhi, E., Goldstone, J., Gutmann, S. and Sipser, M. (2002). Quantum adiabatic evolution algorithms versus simulated annealing. Available at arXiv:quant-ph/0201031v1.
  • Feynman, R. P. (1981/82). Simulating physics with computers. Internat. J. Theoret. Phys. 21 467–488.
  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721–741.
  • Hajek, B. (1988). Cooling schedules for optimal annealing. Math. Oper. Res. 13 311–329.
  • Hartigan, J. A. and Hartigan, P. M. (1985). The dip test of unimodality. Ann. Statist. 13 70–84.
  • Hen, I., Job, J., Albash, T., Rønnow, T. F., Troyer, M. and Lidar, D. A. (2015). Probing for quantum speedup in spin glass problems with planted solutions. Available at arXiv:1502.01663v2.
  • Holevo, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Series in Statistics and Probability 1. North-Holland, Amsterdam.
  • Irback, A., Peterson, C. and Potthast, F. (1996). Evidence for nonrandom hydrophobicity structures in protein chains. Proc. Natl. Acad. Sci. USA 93 533–538.
  • Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A. J., Johansson, J., Bunyk, P., Chapple, E. M., Enderud, C., Hilton, J. P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M. C., Tolkacheva, E., Truncik, C. J. S., Uchaikin, S., Wang, J., Wilson, B. and Rose, G. (2011). Quantum annealing with manufactured spins. Nature 473 194–198.
  • Jones, N. (2013). D-Wave is pioneering a novel way of making quantum computers—but it is also courting controversy. Nature 498 286–288.
  • Kato, T. (1978). Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. In Topics in Functional Analysis (Essays Dedicated to M. G. KreĭN on the Occasion of His 70th Birthday). Adv. in Math. Suppl. Stud. 3 185–195. Academic Press, New York.
  • Katzgraber, H. G., Hamze, F. and Andrist, R. S. (2014). Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines. Phys. Rev. X 4 021008.
  • Kechedzhi, K. and Smelyanskiy, V. N. (2015). Open system quantum annealing in mean field models with exponential degeneracy. Available at arXiv:1505.05878v1.
  • Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science 220 671–680.
  • Lanting, T., Przybysz, A. J., Smirnov, A. Yu., Spedalieri, F. M., Amin, M. H., Berkley, A. J., Harris, R., Altomare, F., Boixo, S., Bunyk, P., Dickson, N., Enderud, C., Hilton, J. P., Hoskinson, E., Johnson, M. W., Ladizinsky, E., Ladizinsky, N., Neufeld, R., Oh, T., Perminov, I., Rich, C., Thom, M. C., Tolkacheva, E., Uchaikin, S., Wilson, A. B. and Rose, G. (2014). Entanglement in a quantum annealing processor. Phys. Rev. X 4 021041.
  • Majewski, J., Li, H. and Ott, J. (2001). The Ising model in physics and statistical genetics. Am. J. Hum. Genet. 69 853–862.
  • Martin-Mayor, V. and Hen, I. (2015). Unraveling quantum annealers using classical hardness. Available at arXiv:1502.02494v1.
  • Martoňák, R., Santoro, G. E. and Tosatti, E. (2002). Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model. Phys. Rev. B 66 094203.
  • McGeoch, C. C. (2014). Adiabatic Quantum Computation and Quantum Annealing. Synthesis Lectures on Quantum Computing. Morgan & Claypool Publisher, San Rafael, CA.
  • Morita, S. and Nishimori, H. (2008). Mathematical foundation of quantum annealing. J. Math. Phys. 49 125210, 47.
  • Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F. and Wrachtrup, J. (2008). Multipartite entanglement among single spins in diamond. Science 320 1326–1329.
  • Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge.
  • O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A. and Smelyanskiy, V. (2014). Bayesian network structure learning using quantum annealing. Available at arXiv:1407.3897v2.
  • Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G. and Aspuru-Guzik, A. (2012). Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2 571.
  • Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S., Biswas, R. and Smelyanskiy, V. N. (2014). A quantum annealing approach for fault detection and diagnosis of graph-based systems. Available at arXiv:1406.7601v2.
  • Pudenz, K. L., Albash, T. and Lidar, D. A. (2014). Error corrected quantum annealing with hundreds of qubits. Nature Comm. 5 3243.
  • Rieffel, E., Venturelli, D., O’Gorman, B., Do, M., Prystay, E. and Smelyanskiy, V. (2014). A case study in programming a quantum annealer for hard operational planning problems. Available at arXiv:1407.2887v1.
  • Rieger, H. and Kawashima, N. (1999). Application of a continuous time cluster algorithm to the two-dimensional random quantum Ising ferromagnet. Eur. Phys. J. B 9 233–236.
  • Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, Chichester.
  • Rønnow, T. F., Wang, Z., Job, J., Boixo, S., Isakov, S. V., Wecker, D., Martinis, J. M., Lidar, D. A. and Troyer, M. (2014). Defining and detecting quantum speedup. Science 25 420–424. 6195.
  • Sakurai, J. J. and Napolitano, J. (2010). Modern Quantum Mechanics, 2nd ed. Addison-Wesley, Reading.
  • Santoro, G. E., Martonák, R., Tosatti, E. and Car, R. (2002). Theory of quantum annealing of an Ising spin glass. Science 295 2427–2430.
  • Shankar, R. (1994). Principles of Quantum Mechanics, 2nd ed. Plenum Press, New York.
  • Shin, S. W., Smith, G., Smolin, J. A. and Vazirani, U. (2014). How “quantum” is the D-Wave machine? Available at arXiv:1401.7087v1.
  • Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994) 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA.
  • Smolin, J. A. and Smith, G. (2014). Classical signature of quantum annealing. Front. Phys. 2 52.
  • Stauffer, D. (2008). Social applications of two-dimensional Ising models. Am. J. Phys. 76 470–473.
  • Suzuki, M. (1976). Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Comm. Math. Phys. 51 183–190.
  • Trotter, H. F. (1959). On the product of semi-groups of operators. Proc. Amer. Math. Soc. 10 545–551.
  • Venturelli, D., Mandrá, S., Knysh, S., O’Gorman, B., Biswas, R. and Smelyanskiy, V. N. (2014). Quantum optimization of fully-connected spin glasses. Available at arXiv:1406.7553v1.
  • Vinci, W., Albash, T., Mishra, A., Warburton, P. A. and Lidar, D. A. (2014). Distinguishing classical and quantum models for the D-Wave device. Available at arXiv:1403.4228v1.
  • Wang, Y. (1995). The $L_{1}$ theory of estimation of monotone and unimodal densities. J. Nonparametr. Statist. 4 249–261.
  • Wang, Y. (2011). Quantum Monte Carlo simulation. Ann. Appl. Stat. 5 669–683.
  • Wang, Y. (2012). Quantum computation and quantum information. Statist. Sci. 27 373–394.
  • Wang, Y. (2013). Asymptotic equivalence of quantum state tomography and noisy matrix completion. Ann. Statist. 41 2462–2504.
  • Wang, Y. and Xu, C. (2015). Density matrix estimation in quantum homodyne tomography. Statist. Sinica 25 953–973.
  • Wang, L., Rønnow, T. F., Boixo, S., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M. and Troyer, M. (2013). Comment on “Classical signature of quantum annealing.” Available at arXiv:1305.5837v1.
  • Winker, P. (2001). Optimization Heuristics in Econometrics: Applications of Threshold Accepting. Wiley, Chichester.
  • Xu, C. (2015). Statistical analysis of quantum annealing models and density matrix estimation in quantum homodyne tomography. Ph.D. thesis, Univ. Wisconsin-Madison.