Statistical Science

Wind Energy: Forecasting Challenges for Its Operational Management

Pierre Pinson

Full-text: Open access

Abstract

Renewable energy sources, especially wind energy, are to play a larger role in providing electricity to industrial and domestic consumers. This is already the case today for a number of European countries, closely followed by the US and high growth countries, for example, Brazil, India and China. There exist a number of technological, environmental and political challenges linked to supplementing existing electricity generation capacities with wind energy. Here, mathematicians and statisticians could make a substantial contribution at the interface of meteorology and decision-making, in connection with the generation of forecasts tailored to the various operational decision problems involved. Indeed, while wind energy may be seen as an environmentally friendly source of energy, full benefits from its usage can only be obtained if one is able to accommodate its variability and limited predictability. Based on a short presentation of its physical basics, the importance of considering wind power generation as a stochastic process is motivated. After describing representative operational decision-making problems for both market participants and system operators, it is underlined that forecasts should be issued in a probabilistic framework. Even though, eventually, the forecaster may only communicate single-valued predictions. The existing approaches to wind power forecasting are subsequently described, with focus on single-valued predictions, predictive marginal densities and space–time trajectories. Upcoming challenges related to generating improved and new types of forecasts, as well as their verification and value to forecast users, are finally discussed.

Article information

Source
Statist. Sci., Volume 28, Number 4 (2013), 564-585.

Dates
First available in Project Euclid: 3 December 2013

Permanent link to this document
https://projecteuclid.org/euclid.ss/1386078879

Digital Object Identifier
doi:10.1214/13-STS445

Mathematical Reviews number (MathSciNet)
MR3161588

Zentralblatt MATH identifier
1331.91140

Keywords
Decision-making electricity markets forecast verification Gaussian copula linear and nonlinear regression quantile regression power systems operations parametric and nonparametric predictive densities renewable energy space–time trajectories stochastic optimization

Citation

Pinson, Pierre. Wind Energy: Forecasting Challenges for Its Operational Management. Statist. Sci. 28 (2013), no. 4, 564--585. doi:10.1214/13-STS445. https://projecteuclid.org/euclid.ss/1386078879


Export citation

References

  • Ackermann, T. (2012). Wind Power in Power Systems, 2nd ed. Wiley, Chichester.
  • Bessa, R. J., Miranda, V. and Gama, J. (2009). Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE T. Power Syst. 24 1657–1666.
  • Billinton, R. and Allan, R. N. (1984). Reliability Evaluation of Power Systems. Plenum Press, London.
  • Bludszuweit, H., Domínguez-Navarro, J. A. and Llombart, A. (2008). Statistical analysis of wind power forecast errors. IEEE T. Power Syst. 23 983–991.
  • Bossavy, A., Girard, R. and Kariniotakis, G. (2013). Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy 16 51–63.
  • Botterud, A., Wang, J., Miranda, V. and Bessa, R. J. (2010). Wind power forecasting in US electricity markets. The Electricity Journal 23 71–82.
  • Bremnes, J. B. (2004). Probabilistic wind power forecasts using local quantile regression. Wind Energy 7 47–54.
  • Brown, B. G., Katz, R. W. and Murphy, A. M. (1984). Time series models to simulate and forecast wind speed and wind power. J. Appl. Meteor. 23 1184–1195.
  • Cliff, A. D. and Ord, J. K. (1984). Space–time modeling with applications to regional forecasting. Trans. Inst. Br. Geogr. 66 119–128.
  • Conejo, A., Carrion, M. and Morales, J. M. (2010). Decision-Making under Uncertainty in Electricity Markets. Springer, New York.
  • Conradsen, K., Nielsen, L. B. and Prahm, L. P. (1984). Review of Weibull statistics for estimation of wind speed distributions. J. Appl. Meteor. 23 1173–1183.
  • Doherty, R. and O’Malley, M. (2005). A new approach to quantify reserve demand in systems with significant installed wind capacity. IEEE T. Power Syst. 20 587–595.
  • Gallego, C., Costa, A., Cuerva, A., Landberg, L., Greaves, B. and Collins, J. (2013). A wavelet-based approach for large wind power ramp characterisation. Wind Energy 16 257–278.
  • Giacomini, R. and Granger, C. W. J. (2004). Aggregation of space–time processes. J. Econometrics 118 7–26.
  • Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M. and Draxl, C. (2011). The state-of-the-art in short-term prediction of wind power: A literature overview, 2nd ed. Technical report. Available at orbit.dtu.dk.
  • Girard, R. and Allard, D. (2013). Spatio-temporal propagation of wind power forecast errors. Wind Energy. To appear.
  • Gneiting, T. (2010). Quantiles as optimal point forecasts. Int. J. Forecasting 27 197–207.
  • Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 243–268.
  • Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359–378.
  • Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006). Calibrated probabilistic forecasting at the stateline wind energy center: The regime-switching space–time method. J. Amer. Statist. Assoc. 101 968–979.
  • Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L. and Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. TEST 17 211–235.
  • Hahn, H., Meyer-Nieberg, S. and Pickl, S. (2009). Electric load forecasting methods: Tools for decision making. European J. Oper. Res. 199 902–907.
  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 357–384.
  • Haslett, J. and Raftery, A. E. (1989). Space–time modelling with long-memory dependence: Assessing Ireland’s wind power resource (with discussion). J. R. Stat. Soc. Ser. C Appl. Stat. 38 1–50.
  • Hering, A. S. and Genton, M. G. (2010). Powering up with space–time wind forecasting. J. Amer. Statist. Assoc. 105 92–104.
  • Hering, A. S. and Genton, M. G. (2011). Comparing spatial predictions. Technometrics 53 414–425.
  • Huang, H. C. and Hsu, N. J. (2004). Modeling transport effects on ground-level ozone using a non-stationary space–time model. Environmetrics 15 251–268.
  • Jeon, J. and Taylor, J. W. (2012). Using conditional kernel density estimation for wind power density forecasting. J. Amer. Statist. Assoc. 107 66–79.
  • Jordà, Ò. and Marcellino, M. (2010). Path forecast evaluation. J. Appl. Econometrics 25 635–662.
  • Joskow, P. L. (2011). Comparing the costs of intermittent and dispatchable electricity generating technologies. Amer. Econ. Rev. 100 238–241.
  • Kariniotakis, G. N., Stavrakakis, G. S. and Nogaret, E. F. (1996). Wind power forecasting using advanced neural networks models. IEEE T. Energy Conver. 11 762–767.
  • Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. Econometrica 46 33–50.
  • Landberg, L. (1999). Short-term prediction of the power production from wind farms. J. Wind Eng. Ind. Aerodyn. 80 207–220.
  • Landberg, L. and Watson, S. J. (1994). Short-term prediction of local wind conditions. Bound.-Layer Meteor. 70 171–195.
  • Lange, M. (2005). On the uncertainty of wind power predictions—Analysis of the forecast accuracy and statistical distribution of errors. J. Solar Energ.-T. ASME 127 177–184.
  • Lange, M. and Focken, U. (2006). Physical Approach to Short-Term Wind Power Prediction. Springer, Berlin.
  • Lau, A. (2011). Probabilistic wind power forecasts: From aggregated approach to spatiotemporal models. Ph.D. thesis, Univ. Oxford, Oxford, UK.
  • Lau, A. and McSharry, P. (2010). Approaches for multi-step density forecasts with application to aggregated wind power. Ann. Appl. Stat. 4 1311–1341.
  • Letcher, T. M. (2008). Future Energy: Improved, Sustainable and Clean Options for Our Planet. Elsevier, Amsterdam.
  • Leutbecher, M. and Palmer, T. N. (2008). Ensemble forecasting. J. Comput. Phys. 227 3515–3539.
  • Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 423–498.
  • Manganelli, S. and Engle, R. F. (2004). A comparison of value-at-risk models in finance. In Risk Measures for the 21st Century (G. Szegö, ed.) 123–143. Wiley, Chichester.
  • Matos, M. A. and Bessa, R. J. (2010). Setting the operating reserve using probabilistic wind power forecasts. IEEE T. Power Syst. 26 594–603.
  • Möller, A., Lenkoski, A. and Thorarinsdottir, T. L. (2013). Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Q. J. Royal Met. Soc. 139 982–991.
  • Møller, J. K., Nielsen, H. A. and Madsen, H. (2008). Time-adaptive quantile regression. Comput. Statist. Data Anal. 52 1292–1303.
  • Morthorst, P. E. (2003). Wind power and the conditions at a liberalized power market. Wind Energy 6 297–308.
  • Mur Amada, J. and Bayod Rújula, A. (2010). Variability of wind and wind power. In Wind Power (S. M. Muyeen Vukovar, ed.) 289–320. Intech Open, Rijeka, Croatia.
  • Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting 8 281–293.
  • Murphy, A. H. and Winkler, R. L. (1987). A general framework for forecast verification. Mon. Wea. Rev. 115 1330–1338.
  • Nelsen, R. B. (2006). An Introduction to Copulas, 2nd ed. Springer, New York.
  • Nielsen, T. S. (2002). Online prediction and control in nonlinear stochastic systems. Ph.D. thesis, Dept. Informatics and Mathematical Modelling, Technical Univ. Denmark.
  • Nielsen, H. A., Madsen, H. and Nielsen, T. S. (2006). Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts. Wind Energy 9 95–108.
  • Ortega-Vazquez, M. A. and Kirschen, D. S. (2009). Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE T. Power Syst. 24 114–124.
  • Palmer, T. N. (2012). Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. Quart. J. Royal Met. Soc. 665 841–861.
  • Papavasiliou, A. and Oren, S. S. (2013). Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network. Oper. Res. 61 578–592.
  • Peña Diaz, A., Gryning, S. E. and Mann, J. (2010). On the length-scale of the wind profile. Quart. J. Royal Met. Soc. 136 2119–2131.
  • Pinson, P. (2012). Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions. J. R. Stat. Soc. Ser. C Appl. Stat. 61 555–576.
  • Pinson, P., Chevallier, C. and Kariniotakis, G. (2007). Trading wind generation from short-term probabilistic forecasts of wind power. IEEE T. Power Syst. 22 1148–1156.
  • Pinson, P. and Girard, R. (2012). Evaluating the quality of scenarios of short-term wind power generation. Appl. Energ. 96 12–20.
  • Pinson, P. and Kariniotakis, G. (2010). Conditional prediction intervals of wind power generation. IEEE T. Power Syst. 25 1845–1856.
  • Pinson, P. and Madsen, H. (2009). Ensemble-based probabilistic forecasting at Horns Rev. Wind Energy 12 137–155.
  • Pinson, P. and Madsen, H. (2012). Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. J. Forecast. 31 281–313.
  • Pinson, P., McSharry, P. E. and Madsen, H. (2010). Reliability diagrams for nonparametric density forecasts of continuous variables: Accounting for serial correlation. Quart. J. Royal Met. Soc. 136 77–90.
  • Pinson, P., Nielsen, H. A., Madsen, H., Papaefthymiou, G. and Klöckl, B. (2009). From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 12 51–62.
  • Raiffa, H. and Schaifer, R. (1961). Applied Statistical Decision Theory. Division of Research, Harvard Business School, Boston.
  • Reikard, G. (2008). Using temperature and state transitions to forecast wind speed. Wind Energy 11 431–443.
  • Roulston, M. S., Kaplan, D. T., Hardenberg, J. and Smith, L. A. (2003). Using medium-range weather forecasts to improve the value of wind energy production. Renew. Energ. 28 585–602.
  • Sideratos, G. and Hatziargyriou, N. D. (2007). An advanced statistical method for wind power forecasting. IEEE T. Power Syst. 22 258–265.
  • Sideratos, G. and Hatziargyriou, N. D. (2012). Probabilistic wind power forecasting using radial basis function neural networks. IEEE T. Power Syst. 27 1788–1796.
  • Skytte, K. (1999). The regulating power market on the Nordic power exchange Nord Pool: An econometric analysis. Energ. Econ. 21 295–308.
  • Stroud, J. R., Müller, P. and Sansó, B. (2001). Dynamic models for spatiotemporal data. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 673–689.
  • Taylor, J. W., McSharry, P. E. and Buizza, R. (1999). Wind power density forecasting using ensemble predictions and time series models. IEEE T. Energy Conver. 24 775–782.
  • Tol, R. S. J. (1997). Autoregressive conditional heteroscedasticity in daily wind speed measurements. Theo. Appl. Clim. 56 113–122.
  • Tong, H. (2011). Threshold models in time series analysis—30 years on. Stat. Interface 4 107–118.
  • Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J. N. and Ciais, P. (2010). Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 3 756–761.
  • Vincent, C. L., Giebel, G., Pinson, P. and Madsen, H. (2010). Resolving nonstationary spectral information in wind speed time series using the Hilbert–Huang transform. J. Appl. Meteor. Clim. 49 253–267.
  • Wallis, K. F. (2003). Chi-squared tests of interval and density forecasts, and the bank of England’s fan charts. Int. J. Forecasting 19 165–175.
  • Weron, R. (2006). Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach. Wiley, New York.
  • Wolak, F. A. (2013). Regulating competition in wholesale electricity supply. In Economic Regulation and Its Reform: What Have We Learned? (N. L. Rose, ed.). Univ. Chicago Press. To appear.
  • WWEA (World Wind Energy Association) (2012). 2012—Half-year report. Technical report. Available at http://www.wwindea.org/webimages/Half-year_report_2012.pdf.
  • Zhu, X. and Genton, M. G. (2012). Short-term wind speed forecasting for power system operations. Int. Stat. Rev. 80 2–23.
  • Zugno, M., Jónsson, T. and Pinson, P. (2013). Trading wind energy based on probabilistic forecasts of both wind generation and market quantities. Wind Energy. 16 909–926.
  • Zugno, M., Morales, J. M., Pinson, P. and Madsen, H. (2013). Pool strategy of a price-maker wind power producer. IEEE T. Power Syst. 28 3440–3450.