Statistical Science

A Random Walk with Drift: Interview with Peter J. Bickel

Ya’acov Ritov

Full-text: Open access

Article information

Source
Statist. Sci. Volume 26, Number 1 (2011), 150-159.

Dates
First available in Project Euclid: 9 June 2011

Permanent link to this document
https://projecteuclid.org/euclid.ss/1307626571

Digital Object Identifier
doi:10.1214/09-STS300

Mathematical Reviews number (MathSciNet)
MR2866282

Citation

Ritov, Ya’acov. A Random Walk with Drift: Interview with Peter J. Bickel. Statist. Sci. 26 (2011), no. 1, 150--159. doi:10.1214/09-STS300. https://projecteuclid.org/euclid.ss/1307626571.


Export citation

References

  • Albers, W., Bickel, P. J. and van Zwet, W. R. (1976). Asymptotic expansions for the power of distribution free tests in the one-sample problem. Ann. Statist. 4 108–156.
  • Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H. and Tukey, J. W. (1972). Robust Estimates of Location: Survey and Advances. Princeton Univ. Press, Princeton, NJ.
  • Bickel, P. J. (1964). On some alternative estimates for shift in the p-variate one sample problem. Ann. Math. Statist. 35 1079–1090.
  • Bickel, P. J. (1965a). On some asymptotically nonparametric competitors of Hotelling’s T2. Ann. Math. Statist. 36 160–173; correction, ibid. 36 1583.
  • Bickel, P. J. (1965b). On some robust estimates of location. Ann. Math. Statist. 36 847–858.
  • Bickel, P. J. (1967). Some contributions to the theory of order statistics. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calf., 1965/66), Vol. I: Statistics 575–591. Univ. California Press, Berkeley, CA.
  • Bickel, P. J. (1974). Edgeworth expansions in non parametric statistics. Ann. Statist. 2 1–20.
  • Bickel, P. J. (1982). On adaptive estimation. Ann. Statist. 10 647–671.
  • Bickel, P. J. (1983). Minimax estimation of the mean of a normal distribution subject to doing well at a point. In Recent Advances in Statistics 511–528. Academic Press, New York.
  • Bickel, P. J. (1984). Parametric robustness: Small biases can be worthwhile. Ann. Statist. 12 864–879.
  • Bickel, P. J. and Breiman, L. (1983). Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab. 11 185–214.
  • Bickel, P. J., Götze, F. and van Zwet, W. R. (1985). A simple analysis of third-order efficiency of estimates. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983) 749–768. Wadsworth, Belmont, CA.
  • Bickel, P. J., Götze, F. and van Zwet, W. R. (1986). The Edgeworth expansion for U-statistics of degree two. Ann. Statist. 14 1463–1484.
  • Bickel, P. J., Götze, F. and van Zwet, W. R. (1995). Resampling fewer than n observations: Gains, losses, and remedies for losses. Statist. Sinica 7 (1997) 1–31.
  • Bickel, P. J., Hammel, E. A. and O’Connell, J. W. (1975). Sex bias in graduate admissions: Data from Berkeley. Science 187 398–404.
  • Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993 & 1998). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins Univ. Press, Baltimore, MD, 1993. Springer, New York, 1998.
  • Bickel, P., Li, B. and Bengtsson, T. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh 3 318–329. IMS, Beachwood, OH.
  • Bickel, P. J. and Ritov, Y. (1987). Efficient estimation in the errors in variables model. Ann. Statist. 15 513–540.
  • Bickel, P. J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist. 1 1071–1095.
  • Bickel, P. J. and Yahav, J. A. (1967). Asymptotically pointwise optimal procedures in sequential analysis. In 1967 Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. I: Statistics 401–413. Univ. California Press, Berkeley, CA.
  • Bickel, P. J. and Yahav, J. A. (1968). Asymptotically optimal Bayes and minimax procedures in squential estimation. Ann. Math. Statist. 39 442–456.
  • Bickel, P. J. and Yahav, J. A. (1969a). Some contributions to the asymptotic theory of Bayes solutions. Z. Wahrsch. Verw. Gebiete 11 257–276.
  • Bickel, P. J. and Yahav, J. A. (1969b). On an A.P.O. rule in sequential estimation with quadratic loss. Ann. Math. Statist. 40 417–426.
  • Hengartner, N., Talbot, L., Shepherd, I. and Bickel, P. (1995). Estimating the probability density of the scattering cross section from Rayleigh scattering experiments. J. Opt. Soc. Am. A 12 1316–1323.
  • Kechris, K., Lin, J. C., Bickel, P. J. and Glazer, A. N. (2006). Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proc. Natl. Acad. Sci. USA 103 9584–9589.
  • Meinshausen, N., Bickel, P. and Rice, J. (2009). Efficient blind search: Optimal power of detection under computational cost constraints. Ann. Appl. Statist. 3 38–60.
  • Snyder, C., Bengtsson, T., Bickel, P. and Anderson, J. (2008). Obstacles to high-dimensional particle filtering. Monthly Weather Review 136 4629–4640.