Statistical Science

Testing for Non-Gaussianity on Cosmic Microwave Background Radiation: A Review

Domenico Marinucci

Full-text: Open access

Abstract

Cosmic microwave background (CMB) radiation can be viewed as a snapshot of the Universe 13 billion years ago, when it had 0.002% of its current age. A flood of data on CMB is becoming available thanks to satellite and balloon-borne missions, and a number of statistical issues have been raised consequently. A very relevant issue is the characterization of the statistical distribution of CMB and, in particular, procedures to test the assumption that the generating random field is Gaussian. Gaussianity tests are of fundamental importance both to validate statistical inference procedures and to discriminate between competing scenarios for the Big Bang dynamics. Several procedures have been proposed in the cosmological literature. This article is an attempt to provide a brief survey of developments in this area.

Article information

Source
Statist. Sci., Volume 19, Number 2 (2004), 294-307.

Dates
First available in Project Euclid: 14 January 2005

Permanent link to this document
https://projecteuclid.org/euclid.ss/1105714164

Digital Object Identifier
doi:10.1214/088342304000000783

Mathematical Reviews number (MathSciNet)
MR2140543

Zentralblatt MATH identifier
1100.62636

Keywords
Cosmic microwave background radiation Gaussianity spherical random fields

Citation

Marinucci, Domenico. Testing for Non-Gaussianity on Cosmic Microwave Background Radiation: A Review. Statist. Sci. 19 (2004), no. 2, 294--307. doi:10.1214/088342304000000783. https://projecteuclid.org/euclid.ss/1105714164


Export citation

References

  • Adler, R. (1981). The Geometry of Random Fields. Wiley, New York.
  • Aghanim, N., Kunz, M., Castro, P. G. and Forni, O. (2003). Non-Gaussianity: Comparing wavelet and Fourier based methods. Preprint. Available at http://it.arxiv.org as astro-ph/ 0301220.
  • Banday, A. J., Zaroubi, S. and Górski, K. M. (2000). On the non-Gaussianity observed in the COBE--DMR sky maps. Astrophysical J. 533 575--587. Available at http://it.arxiv.org as astro-ph/9908070.
  • Barreiro, R. B. et al. (2000). Testing the Gaussianity of the COBE--DMR data with spherical wavelets. Monthly Notices of the Royal Astronomical Society 318 475--481. Available at http://it.arxiv.org as astro-ph/0004202.
  • Bartolo, N., Matarrese, S. and Riotto, A. (2002). Non-Gaussianity from inflation. Phys. Rev. D 65 103505. Available at http://it.arxiv.org as hep-ph/0112261.
  • Bond, J. R. and Efstathiou, G. (1987). The statistics of cosmic background radiation fluctuations. Monthly Notices of the Royal Astronomical Society 226 655--687.
  • Cabella, P. et al. (2003). The relative performance of pixel and harmonic space methods to search for non-Gaussianity in CMB: A Monte Carlo study. Unpublished manuscript.
  • Cayón, L. et al. (2001). Spherical Mexican hat wavelet: An application to detect non-Gaussianity in the COBE--DMR maps. Monthly Notices of the Royal Astronomical Society 326 1243--1248.
  • Cayón, L., Martínez-González, E., Argüeso, F., Banday, A. J. and Górski, K. M. (2003). COBE--DMR constraints on the non-linear coupling parameter: A wavelet based method. Monthly Notices of the Royal Astronomical Society 339 1189--1194.
  • Chiang, L.-Y., Naselsky, P. and Coles, P. (2001). Phase-mapping as a powerful diagnostic of primordial non-Gaussianity. Available at http://it.arxiv.org as astro-ph/0208235.
  • Chiang, L.-Y., Naselsky, P. D., Verkhodanov, O. V. and Way, M. J. (2003). Non-Gaussianity of the derived maps from the first-year WMAP data. Astrophysical J. Letters 590 L65--L68. Available at http://it.arxiv.org as astro-ph/0303643.
  • Contaldi, C. R. and Magueijo, J. (2001). Generating non-Gaussian maps with a given power spectrum and bispectrum. Phys. Rev. D 63 103512. Available at http://it.arxiv.org as astro-ph/0101512.
  • Dehling, H. and Taqqu, M. S. (1989). The empirical process of some long-range dependent sequences with an application to $U$-statistics. Ann. Statist. 17 1767--1783.
  • Diego, J. M. et al. (1999). Partition function based analysis of cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society 306 427--436.
  • Doré, O., Colombi, S. and Bouchet, F. R. (2003). Probing CMB non-Gaussianity using local curvature. Monthly Notices of the Royal Astronomical Society 344 905--916. Available at http://it.arxiv.org as astro-ph/0202135.
  • Doukhan, P., Lang, G. and Surgailis, D. (2002). Asymp- totics of weighted empirical processes of linear fields with long-range dependence. Ann. Inst. H. Poincaré Probab. Statist. 38 879--896.
  • Ferreira, P. G., Magueijo, J. and Górski, K. M. (1998). Evidence for non-Gaussianity in the COBE DMR four-year sky maps. Astrophysical J. Letters 503 L1. Available at http://it.arxiv.org as astro-ph/9803256.
  • Gangui, A., Pogosian, L. and Winitzki, S. (2002). Cosmic string signatures in anisotropies of the cosmic microwave background. New Astronomy Reviews 46 681--691. Available at http://it.arxiv.org as astro-ph/0112145.
  • Hadwiger, H. (1959). Normale Körper im euklidischen Raum und ihre topologischen und metrischen Eigenschaften. Math. Z. 71 124--140.
  • Hannan, E. J. (1970). Multiple Time Series. Wiley, New York.
  • Hansen, F. K., Marinucci, D., Natoli, P. and Vittorio, N. (2002). Testing for non-Gaussianity of the cosmic microwave background in harmonic space: An empirical process approach. Phys. Rev. D 66 063002. Available at http://it.arxiv.org as astro-ph/0206501.
  • Hansen, F. K., Marinucci, D. and Vittorio, N. (2003). The extended empirical process test for non-Gaussianity in the CMB, with an application to non-Gaussian inflationary models. Phys. Rev. D 67 123004. Available at http://it.arxiv.org as astro-ph/0302202.
  • Heavens, A. F. and Gupta, S. (2000). Full-sky correlations of peaks in the microwave background. Monthly Notices of the Royal Astronomical Society 324 960--968.
  • Heavens, A. F. and Sheth, R. K. (1999). The correlation of peaks in the microwave background. Monthly Notices of the Royal Astronomical Society 310 1062--1070.
  • Hu, W. (2001). Angular trispectrum of the cosmic microwave background. Phys. Rev. D 64 083005. Available at http://it.arxiv.org as astro-ph/0105117.
  • Kogut, A. et al. (1996). Tests for non-Gaussian statistics in the DMR four-year sky maps. Astrophysical J. Letters 464 L29.
  • Komatsu, E. et al. (2003). First-year Wilkinson microwave anisotropy probe (WMAP) observations: Tests of Gaussianity. Astrophysical J. Supplement Series 148 119--134. Available at http://it.arxiv.org as astro-ph/0302223.
  • Komatsu, E. and Spergel, D. N. (2001). Acoustic signatures in the primary microwave background bispectrum. Phys. Rev. D 63 063002. Available at http://it.arxiv.org as astro-ph/0005036.
  • Komatsu, E., Wandelt, B. D., Spergel, D. N., Banday, A. J. and Gorski, K. M. (2002). Measurement of the cosmic microwave background bispectrum on the COBE DMR sky maps. Astrophysical J. 566 19--29. Available at http://it.arxiv.org as astro-ph/0107605.
  • Liboff, R. L. (1998). Introductory Quantum Mechanics, 3rd ed. Addison--Wesley, Reading, MA.
  • Leonenko, N. N. (1999). Limit Theorems for Random Fields with Singular Spectrum. Kluwer, Dordrecht.
  • Luo, X. (1994). The angular bispectrum of the cosmic microwave background. Astrophysical J. Letters 427 L71--L74. Available at http://it.arxiv.org as astro-ph/9312004.
  • Marinucci, D. and Piccioni, M. (2004). The empirical process on Gaussian spherical harmonics. Ann. Statist. 32 1261--1288.
  • Martinez-González, E. et al. (2000). Tests of Gaussianity of CMB maps. Astrophysical Letters and Communications 37 335--340. Available at http://it.arxiv.org as astro-ph/0010330.
  • Martinez-González, E., Gallegos, J. E., Argueso, F., Cayon, L. and Sanz, J. L. (2002). The performance of spherical wavelets to detect non-Gaussianity in the cosmic microwave background sky. Monthly Notices of the Royal Astronomical Society 336 22--32. Available at http://it.arxiv.org as astro-ph/0111284.
  • Mecke, K. R., Buchert, T. and Wagner, H. (1994). Robust morphological measures for large-scale structure in the Universe. Astronomy and Astrophysics 288 697--704.
  • Miller, C. J., Nichol, R. C., Genovese, C. and Wasserman, L. (2002). A nonparametric analysis of the cosmic microwave background power spectrum. Astrophysical J. Letters 565 L67--L70. Available at http://it.arxiv.org as astro-ph/0112049.
  • Natoli, P., Marinucci, D., Cabella, P., De Gasperis, G. and Vittorio, N. (2002). Non-iterative methods to estimate the in-flight noise properties of CMB detectors. Astronomy and Astrophysics 383 1100--1112.
  • Novikov, D. I. and Jørgensen, H. E. (1996). A theoretical investigation of the topology of the cosmic microwave background anisotropy on the scale $\sim 1$ degree. Astrophysical J. 471 521--541.
  • Novikov, D., Schmalzing, J. and Mukhanov, V. F. (2000). On non-Gaussianity in the cosmic microwave background. Astronomy and Astrophysics 364 17--25. Available at http://it.arxiv.org as astro-ph/0006097.
  • Peacock, J. A. (1999). Cosmological Physics. Cambridge Univ. Press.
  • Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton Univ. Press.
  • Phillips, N. G. and Kogut, A. (2001). Statistical power, the bispectrum and the search for non-Gaussianity in the cosmic microwave background anisotropy. Astrophysical J. 548 540--549. Available at http://it.arxiv.org as astro-ph/0010333.
  • Polenta, G. et al. (2002). Search for non-Gaussian signals in the BOOMERANG maps: Pixel-space analysis. Astrophysical J. Letters 572 L27--L31.
  • Smoot, G. F. et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical J. Letters 396 L1--L5.
  • Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications. Wiley, Chichester.
  • Turner, M. S. and Tyson, J. A. (1999). Cosmology at the millennium. Rev. Modern Phys. 71 S145--S164. Available at http://it.arxiv.org as astro-ph/9901113.
  • Varshalovich, D. A., Moskalev, A. N. and Khersonskii, V. K. (1988). Quantum Theory of Angular Momentum. World Scientific, Singapore.
  • Vittorio, N. and Juszkiewicz, R. (1987). Hot spots in the microwave sky. Astrophysical J. Letters 314 L29--L32.
  • Wasserman, L. et al. (2001). Nonparametric inference in astrophysics. Preprint. Available at http://it.arxiv.org as astro-ph/ 0112050.
  • Winitzki, S. and Kosowsky, A. (1998). Minkowski functional description of microwave background Gaussianity. New Astronomy 3 75--100. Available at http://it.arxiv.org as astro-ph/9710164.
  • Winitzki, S. and Wu, J. H. P. (2000). Inter-scale correlations as measures of CMB Gaussianity. Preprint. Available at http://it.arxiv.org as astro-ph/0007213.
  • Wong, E. (1971). Stochastic Processes in Information and Dynamical Systems. McGraw--Hill, New York.
  • Wu, J. H. P. et al. (2001). Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map. Phys. Rev. Lett. 87 251303. Available at http://it.arxiv.org as astro-ph/0104248.