Rocky Mountain Journal of Mathematics
- Rocky Mountain J. Math.
- Volume 48, Number 5 (2018), 1399-1436.
On nonlocal fractional Laplacian problems with oscillating potentials
Vincenzo Ambrosio, Luigi D'Onofrio, and Giovanni Molica Bisci
Abstract
In this paper, we deal with the following fractional nonlocal $p$-Laplacian problem: \begin{equation} \begin{cases}(-\Delta )^{s}_{p}u= \lambda \beta (x) u^q + f(u) &\mbox {in } \Omega ,\\ u\geq 0,\ u\not \equiv 0 &\mbox {in } \Omega ,\\ u=0 &\mbox {in } \mathbb{R} ^{N}\setminus \Omega , \end{cases} \end{equation} where $\Omega \subset \mathbb{R} ^{N}$ is a bounded domain with a smooth boun\-dary of $\mathbb{R} ^N$, $s\in (0,1)$, $p\in (1, \infty )$, $N> s p$, $\lambda $ is a real parameter, $\beta \in L^\infty (\Omega )$ is allowed to be indefinite in sign, $q>0$ and $f:[0,+\infty )\to \mathbb{R} $ is a continuous function oscillating near the origin or at infinity. By using variational and topological methods, we obtain the existence of infinitely many solutions for the problem under consideration. The main results obtained here represent some new interesting phenomena in the nonlocal setting.
Article information
Source
Rocky Mountain J. Math., Volume 48, Number 5 (2018), 1399-1436.
Dates
First available in Project Euclid: 19 October 2018
Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1539936029
Digital Object Identifier
doi:10.1216/RMJ-2018-48-5-1399
Mathematical Reviews number (MathSciNet)
MR3866552
Zentralblatt MATH identifier
06958785
Subjects
Primary: 35J20: Variational methods for second-order elliptic equations 35J62: Quasilinear elliptic equations 35J92: Quasilinear elliptic equations with p-Laplacian
Secondary: 35J15: Second-order elliptic equations 47J30: Variational methods [See also 58Exx]
Keywords
$p$-fractional Laplacian operator infinitely many solutions variational methods
Citation
Ambrosio, Vincenzo; D'Onofrio, Luigi; Bisci, Giovanni Molica. On nonlocal fractional Laplacian problems with oscillating potentials. Rocky Mountain J. Math. 48 (2018), no. 5, 1399--1436. doi:10.1216/RMJ-2018-48-5-1399. https://projecteuclid.org/euclid.rmjm/1539936029