Rocky Mountain Journal of Mathematics

On the rank of elliptic curves coming from rational Diophantine triples

Julián Aguirre, Andrej Dujella, and Juan Carlos Peral

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 42, Number 6 (2012), 1759-1776.

Dates
First available in Project Euclid: 25 February 2013

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1361800604

Digital Object Identifier
doi:10.1216/RMJ-2012-42-6-1759

Mathematical Reviews number (MathSciNet)
MR3028761

Zentralblatt MATH identifier
1293.11074

Citation

Aguirre, Julián; Dujella, Andrej; Peral, Juan Carlos. On the rank of elliptic curves coming from rational Diophantine triples. Rocky Mountain J. Math. 42 (2012), no. 6, 1759--1776. doi:10.1216/RMJ-2012-42-6-1759. https://projecteuclid.org/euclid.rmjm/1361800604


Export citation

References

  • A. Baker and H. Davenport, The equations $3x^2-2=y^2$ and $8x^2-7=z^2$, Quart. J. Math. 20 (1969), 129-137.
  • J. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1997.
  • L.E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1966.
  • A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25-30.
  • –––, On Diophantine quintuples, Acta Arith. 81 (1997), 69-79.
  • –––, Diophantine triples and construction of high-rank elliptic curves over $\Q$ with three non-trivial $2$-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.
  • –––, Diophantine $m$-tuples and elliptic curves, J. Theor. Nombres Bordeaux 13 (2001), 111-124.
  • –––, There are only finitely many Diophantine quintuples, J. reine angew. Math. 566 (2004), 183-214.
  • –––, On Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. 42 (2007), 3-18.
  • –––, Rational Diophantine sextuples with mixed signs, Proc. Japan Acad. Sci. 85 (2009), 27-30.
  • –––, High rank elliptic curves with prescribed torsion, http://web.math.hr/~duje/tors/tors.html.
  • Y. Fujita, The number of Diophantine quintuples, Glas. Mat. 45 (2010).
  • P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. 41 (2006), 195-203.
  • –––, Adjugates of Diophantine quadruples, Integers 10 (2010), 201-209.
  • R.K. Guy, Unsolved problems in number theory, 3rd edition, Springer-Verlag, New York, 2004.
  • J.-F. Mestre, Construction de courbes elliptiques sur ${\bf Q}$ de rank $\geq 12$, C.R. Acad. Sci. 295 (1982), 643-644.
  • –––, Formules explicites et minorations de conducteurs de variétés algébriques, Compos. Math. 58 (1986), 209-232.
  • R. Miranda, An overview of algebraic surfaces, in Algebraic geometry, Dekker, New York, 1997.
  • K. Nagao, An example of elliptic curve over ${\bf Q}$ with rank $\geq 20$, Proc. Japan Acad. Sci. 69 (1993), 291-293.
  • PARI/GP, version 2.4.0, Bordeaux, 2008, http://pari.math.u-bordeaux.fr.
  • T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), 211-240.
  • J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994.
  • Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL, 2008. \noindentstyle